Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare neurological disease shines light on health of essential nerve cells

23.01.2015

Ian Duncan is a Scotsman with the iron discipline and stamina of a competitive marathoner, triathlete and cross-country skier. As a neuroscientist at the School of Veterinary Medicine at the University of Wisconsin-Madison, he's applied his tenacity to a rare genetic disorder.

Known as Pelizaeus Merzbacher disease or PMD, it's a devastating neurological condition that, in its most severe form, kills infants weeks after birth.


White areas in the brain of a healthy dog show axons (neural conductive fibers) with normal myelin sheathing (white) are pictured. The brain of a dog that models a genetic disease called Pelizaeus Merzbacher shows a total absence of myelin insulation. Studies in the lab of Ian Duncan at the University of Wisconsin-Madison suggest myelin may slowly develop in the spinal cord but not brain in this often-fatal disease.

Credit: Josh Mayer

Thirty years ago, Duncan noticed a genetic mutation in dogs that was practically identical to the disease in humans. Now, in the online edition of the journal Neurobiology of Disease, Duncan has laid out the results of his marathon pursuit of PMD.

His work underscores the benefits of patience and persistence in the discovery of unexpected results that may point toward new therapies.

Like multiple sclerosis, PMD is a disease that interferes with myelin, the insulation needed for normal communication in the nervous system. The genetic mutation that blocks the formation of myelin is found on the X chromosome, so the disease occurs only in males.

Studies of the dogs are crucial, Duncan says, since PMD is so rare in humans -- occurring in one male birth in roughly 200,000.

Duncan says his studies have yielded discoveries that could help fight the grievous illness.

First, Duncan determined that in dogs, myelin in the spinal cord is gradually generated after birth, proving that the cells that make myelin survive and work in some regions. "The brain is acting differently than the spinal cord," Duncan says. "It's striking, on day one there is no myelin. But after some months the spinal cord develops myelin and by two years it is almost normal, but the brain is not, and the lack of myelin is the cause of death."

In these dogs, and presumably in human PMD, there are abnormally few myelin-forming cells, or oligodendrocytes, in the brain and spinal cord. "For reasons we don't know, the spinal cord repairs because the number of those cells increases with time, but this doesn't happen in the brain."

Second, nerve fibers called axons totally lacking myelin have survived for more than two years in the dogs, flouting the accepted wisdom that axons cannot survive without myelin. (Axons are fibers that connect nerve cells to each other, and to muscles.) If lack of myelin is not a death sentence for the axon, the clinical picture for many myelin-related diseases is much brighter, Duncan says.

Third, the recognition that myelin-making cells are still active is shifting Duncan's focus toward drugs that can increase their number and activity.

"There is hope that several drugs already on the market could stimulate the production of more myelin," he says. "That could help PMD patients -- both human and canine -- and potentially MS patients as well."

That concept is already being tested in MS patients in a phase 1 trial at the University of California, San Francisco.

Unlike MS, PMD is a genetic disorder, suggesting the need for gene therapy. However, Duncan suspects that simply increasing the number of myelin-producing cells early in PMD might cause myelin formation in the brain as well as the spinal cord, eliminating the need for gene therapy.

Finally, Duncan says, his studies make clear that oligodendrocytes -- cells that create a protective sheath around myelin -- develop differently in the spinal cord than in the brain.

"It's a big surprise," he says. "Neurologists have focused on the brain, which is bigger and easier to image."

Duncan says the dog model of PMD is "strikingly similar to the human disease which we are unable to study in any detail. This is a naturally occurring disease, and our study of it will generate treatments for dogs and for humans alike."

###

David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

Ian Duncan | EurekAlert!

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>