Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare genomic mutations found in 10 families with early-onset, familial Alzheimer's disease

18.06.2013
Unique changes in DNA structure found in each family, affected genes important to neuronal function

Although a family history of Alzheimer's disease is a primary risk factor for the devastating neurological disorder, mutations in only three genes – the amyloid precursor protein and presenilins 1 and 2 – have been established as causative for inherited, early-onset Alzheimer's, accounting for about half of such cases.

Now Massachusetts General Hospital (MGH) researchers have discovered a type of mutation known as copy-number variants (CNVs) – deletions, duplications, or rearrangements of human genomic DNA – in affected members of 10 families with early-onset Alzheimer's. Notably, different genomic changes were identified in the Alzheimer's patients in each family.

The study was conducted as part of the Alzheimer's Genome Project – directed by Rudolph Tanzi, PhD, director of the Genetics and Aging Research Unit at Massachusetts General Hospital (MGH) and a co-discoverer of the first three early-onset genes – and was supported by the Cure Alzheimer's Fund and the National Institute of Mental Health (NIMH).

"We found that the Alzheimer's-afflicted members of these families had duplications or deletions in genes with important roles in brain function, while their unaffected siblings had unaltered copies of those genes," says Basavaraj Hooli, PhD, of the Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, lead author of a report that has been published online in Molecular Psychiatry. "Since our preliminary review of the affected genes has provided strong clues to a range of pathways associated with Alzheimer's disease and other forms of dementia, we believe that further research into the functional effects of these CNVs will provide new insights into Alzheimer's pathogenesis." Hooli is a research fellow in Neurology at Harvard Medical School.

Most studies searching for genes contributing to Alzheimer's risk have looked for variants in a single nucleotide, and while thousands of such changes have been identified, each appears to have a very small impact on disease risk. Recently research has found that CNVs – in which DNA segments of varying lengths are deleted or duplicated – have a greater impact on genomic diversity than do single-nucleotide changes. This led Tanzi and his team to search for large CNVs in affected members of families with inherited Alzheimer's disease. "These are the first new early-onset familial Alzheimer's disease gene mutations to be reported since 1995, when we co-discovered the presenilins. As with those original genes, we hope to use the information gained from studies of the new Alzheimer's mutations to guide the development of novel therapies aimed at preventing and treating this devastating disease." Tanzi explains.

The investigators reviewed genomic data from two sources – the NIMH Alzheimer's Disease Genetics Initiative and the National Cell Repository for Alzheimer's Disease – and focused on 261 families with at least one member who developed Alzheimer's before the age of 65. Using a novel algorithm they had developed for analyzing CNVs, the researchers identified deletions or duplications that appeared only in affected members of these families. Two of these families had CNVs that included the well-established amyloid precursor protein gene, but 10 others were found to have novel Alzheimer's-associated CNVs, with different gene segments being affected in each family.

While none of the novel variants have previously been associated with Alzheimer's disease, most of them affect genes believed to be essential to normal neuronal function, and several have been previously associated with other forms of dementia. For example, one of the identified CNVs involves deletion of a gene called CHMP2B, mutations of which can cause ALS. In another family, affected members had three copies of the gene MAPT, which encodes the tau protein found in the neurofibrillary tangles characteristic of Alzheimer's. Mutations in MAPT also cause frontotemporal dementia.

Hooli explains, "Potential clinical application of the findings of this study are not yet clear and require two additional pieces of information: similar studies in larger groups of families with inherited Alzheimer's to establish the prevalence of these CNVs and whether the presence of one ensures development of the disease, and a better understanding of how these variants affect neuronal pathways leading to the early-onset form of Alzheimer's disease."

"In a broader sense," Tanzi adds, "the advent of affordable, advanced whole-genome sequencing will lead to the identification of novel, rare mutations that lead to many human disorders. In the future, diagnosis and prognosis may rely more on disease genetics than on traditional laboratory results and behavioral effects. If knowing the exact genetic causes of these disorders leads to more effective and efficient treatment strategies targeted to specific defects, the consequences of this approach would be enormous."

In addition to Tanzi, the Joseph P. and Rose F. Kennedy Professor of Neurology at HMS and senior author of the current report, co-authors are Kristina Mullin, MS, Maxwell A. Blumenthal, and Can Zhang, PhD, MGH Genetics and Aging Unit; Gayatry Mohapatra, PhD, MGH Molecular Pathology Unit; Zsolt M. Kovacs-Vajna, PhD, University of Brescia, Italy; Manuel Mattheisen, MD, Brigham and Women's Hospital; Christoph Lange, PhD, Harvard School of Public Health, and Lars Bertram, MD, Max-Planck Institute for Molecular Genetics, Berlin.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $775 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."

Mike Morrison | EurekAlert!
Further information:
http://www.massgeneral.org/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>