Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In rare disease, a familiar protein disrupts gene function

27.05.2009
Knowledge may improve diagnosis for children with Cornelia de Lange syndrome

An international team of scientists studying a rare genetic disease discovered that a bundle of proteins with the long-established function of keeping chromosomes together also plays an important role in regulating genes in humans.

When gene regulation is disrupted in the multisystem genetic disease Cornelia deLange syndrome (CdLS), children may suffer missing hands or fingers, mental retardation, growth failure, cleft palate, heart defects, and other impairments. For families and patients, better knowledge of how those genes perturb normal development may enable researchers to design better diagnostic tests for the disease, and also provide targets for eventual treatments.

The study appeared today in the online journal Public Library of Science Biology (PloS Biology). The study leader was Ian D. Krantz, M.D., a specialist in pediatric genetics at The Children's Hospital of Philadelphia, where he directs a unique full-service clinic for children with CdLS.

First described in 1933, CdLS affects multiple organs and typically results in distinctive facial features, such as thin eyebrows that join, long eyelashes, thin lips, and excessive body hair. It affects an estimated one in 10,000 children. In the past, CdLS was only recognized in its very severe form that was often fatal in childhood; now most children with the condition live into adulthood. CdLS has a wide range of severity, with the mildest form manifesting as apparent isolated mental retardation and/or autism.

Krantz and colleagues investigated cohesin, a protein complex consisting of at least four proteins that form a ring that encircles chromosomes during cell division. Cohesin's long-established role, called "canonical" by the authors, is to control chromatids—the long strands that chromosomes form when they copy their DNA.

However, said Krantz, one open question is biology has been, "What does cohesin do when cells are not dividing?" His team's paper provides part of the answer, as the first study in human cells to identify genes that are dysregulated when cohesin doesn't work properly. Cohesin's role in dysregulation of gene expression (regulating the degree to which specific genes are turned on or off) has attracted considerable scientific interest with a recent discovery that it may also be implicated in cancer.

The current study builds on previous work by Krantz, who in 2004 co-led the study that discovered NIPBL, the first gene known to cause CdLS. Krantz partnered with his long-time collaborator, Laird S. Jackson, M.D., of Drexel University School of Medicine in Philadelphia. They discovered a second CdLS gene in 2007, and together they maintain the world's largest database of patients with CdLS.

In the current study, Krantz did a genome-wide analysis of mutant cell lines from 16 patients with severe CdLS. All the cells had mutations in the NIPBL gene, which plays a role in moving cohesin onto and off chromosomes.

The researchers used DNA microarrays, manufactured chips that measure how strongly different genes are expressed throughout a cell's full complement of DNA. The study team identified hundreds of genes that were dysregulated compared to controls, and also detected gene expression profiles that were unique to CdLS. Importantly, said Krantz, the expression levels of genes corresponded to the severity of the disease. The team replicated its findings in 101 additional samples.

"We found that gene expression is exquisitely regulated by cohesin and the NIBPL gene," said Krantz. "The gene expression patterns we found have great potential to be used in a diagnostic tool for Cornelia de Lange syndrome." He added that a gene array might also be developed as a single-platform tool to diagnose, from a patient's blood sample, not only CdLS, but also a variety of other developmental disorders.

Funding for the study came from the National Institute of Child Health and Development of the National Institutes of Health, the Pennsylvania Department of Health, the Genome Network Project and Grant-in-Aid for Scientific Research from the MEXT, a Japanese government ministry. First author Jinglan Liu receives a Cornelia de Lange Foundation Fellowship Grant.

Krantz's co-authors on the study came from Children's Hospital; the University of Pennsylvania School of Medicine; Drexel University School of Medicine; the Tokyo Institute of Technology; the Misakaenosono Mutsumi Developmental, Medical, and Welfare Center, in Isahaya, Japan; and the National University of Colombia, in Bogota, Colombia.

Liu et al, "Transcriptional dysregulation in NIPBL and cohesin mutant human cells," PloS Biology, published online, May 26, 2009.

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 430-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>