Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In rare disease, a familiar protein disrupts gene function

27.05.2009
Knowledge may improve diagnosis for children with Cornelia de Lange syndrome

An international team of scientists studying a rare genetic disease discovered that a bundle of proteins with the long-established function of keeping chromosomes together also plays an important role in regulating genes in humans.

When gene regulation is disrupted in the multisystem genetic disease Cornelia deLange syndrome (CdLS), children may suffer missing hands or fingers, mental retardation, growth failure, cleft palate, heart defects, and other impairments. For families and patients, better knowledge of how those genes perturb normal development may enable researchers to design better diagnostic tests for the disease, and also provide targets for eventual treatments.

The study appeared today in the online journal Public Library of Science Biology (PloS Biology). The study leader was Ian D. Krantz, M.D., a specialist in pediatric genetics at The Children's Hospital of Philadelphia, where he directs a unique full-service clinic for children with CdLS.

First described in 1933, CdLS affects multiple organs and typically results in distinctive facial features, such as thin eyebrows that join, long eyelashes, thin lips, and excessive body hair. It affects an estimated one in 10,000 children. In the past, CdLS was only recognized in its very severe form that was often fatal in childhood; now most children with the condition live into adulthood. CdLS has a wide range of severity, with the mildest form manifesting as apparent isolated mental retardation and/or autism.

Krantz and colleagues investigated cohesin, a protein complex consisting of at least four proteins that form a ring that encircles chromosomes during cell division. Cohesin's long-established role, called "canonical" by the authors, is to control chromatids—the long strands that chromosomes form when they copy their DNA.

However, said Krantz, one open question is biology has been, "What does cohesin do when cells are not dividing?" His team's paper provides part of the answer, as the first study in human cells to identify genes that are dysregulated when cohesin doesn't work properly. Cohesin's role in dysregulation of gene expression (regulating the degree to which specific genes are turned on or off) has attracted considerable scientific interest with a recent discovery that it may also be implicated in cancer.

The current study builds on previous work by Krantz, who in 2004 co-led the study that discovered NIPBL, the first gene known to cause CdLS. Krantz partnered with his long-time collaborator, Laird S. Jackson, M.D., of Drexel University School of Medicine in Philadelphia. They discovered a second CdLS gene in 2007, and together they maintain the world's largest database of patients with CdLS.

In the current study, Krantz did a genome-wide analysis of mutant cell lines from 16 patients with severe CdLS. All the cells had mutations in the NIPBL gene, which plays a role in moving cohesin onto and off chromosomes.

The researchers used DNA microarrays, manufactured chips that measure how strongly different genes are expressed throughout a cell's full complement of DNA. The study team identified hundreds of genes that were dysregulated compared to controls, and also detected gene expression profiles that were unique to CdLS. Importantly, said Krantz, the expression levels of genes corresponded to the severity of the disease. The team replicated its findings in 101 additional samples.

"We found that gene expression is exquisitely regulated by cohesin and the NIBPL gene," said Krantz. "The gene expression patterns we found have great potential to be used in a diagnostic tool for Cornelia de Lange syndrome." He added that a gene array might also be developed as a single-platform tool to diagnose, from a patient's blood sample, not only CdLS, but also a variety of other developmental disorders.

Funding for the study came from the National Institute of Child Health and Development of the National Institutes of Health, the Pennsylvania Department of Health, the Genome Network Project and Grant-in-Aid for Scientific Research from the MEXT, a Japanese government ministry. First author Jinglan Liu receives a Cornelia de Lange Foundation Fellowship Grant.

Krantz's co-authors on the study came from Children's Hospital; the University of Pennsylvania School of Medicine; Drexel University School of Medicine; the Tokyo Institute of Technology; the Misakaenosono Mutsumi Developmental, Medical, and Welfare Center, in Isahaya, Japan; and the National University of Colombia, in Bogota, Colombia.

Liu et al, "Transcriptional dysregulation in NIPBL and cohesin mutant human cells," PloS Biology, published online, May 26, 2009.

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 430-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>