Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid, low-cost detection of Zika virus using paper-based synthetic gene networks

09.05.2016

University of Toronto Assistant Professor of Pharmacy Keith Pardee and an international team of collaborators, including scientists from the Wyss Institute at Harvard University, have developed a low-cost, easy-to-use diagnostic platform for detecting the Zika virus.

Using cutting-edge technologies, the team of collaborators from Wyss, Massachusetts Institute of Technology, Boston University, Arizona State University, Cornell University, University of Wisconsin-Madison, Broad Institute, and the University of Toronto have developed a cell-free, paper-based platform that can host synthetic gene networks for use outside of the lab.


University of Toronto Assistant Professor of Pharmacy Keith Pardee and an international team of collaborators, including scientists from the Wyss Institute at Harvard University, have developed a low-cost, easy-to-use diagnostic platform for detecting the Zika virus.

Credit: University of Toronto and Wyss Institute at Harvard University

Employing toehold sensors and isothermal RNA amplification, the team has created diagnostic sensors on a freeze-dried piece of paper the size of a stamp. Activated by the amplified sample, the diagnostic sensors programmed into this paper provide extremely sensitive, low-cost, programmable diagnostics that provide rapid results.

This revolutionary paper-based sensor system provides a much needed solution to the challenge of diagnosing the Zika virus. Currently, reliable diagnosis for patients suspected of the Zika virus involves nucleic acid-based testing, which is dependent on laboratory access, highly specific and expensive equipment, and trained technicians. As a result, this type of testing is unsuitable and unavailable in remote locations where surveillance and containment are critically needed.

This new technology, on the other hand, is easy to use and requires little to no training. Specifically tuned to the Zika virus, sensors are applied to small paper samples. Using a small saliva, urine, or blood sample, equivalent to the amount required by blood glucose monitors to test blood sugar levels, the sample is applied to the sensors, triggering a response that provides visually evident results in as little as an hour.

If the sample contains the RNA of the Zika virus, the test area turns purple. In making such a simple to use test, the team has created a exciting tool that promises to bring portable, reliable, and inexpensive Zika diagnostics to the field at less than a dollar per test. Moreover, it does not require a lab, expensive equipment, or highly-trained technicians to administer.

"The diagnostic platform developed by our team has provided a high-performing, low-cost tool that can work in remote locations," notes Dr. Keith Pardee, the lead author of the study. "We have developed a workflow that combines molecular tools to provide diagnostics that can be read out on a piece of paper no larger than a postage stamp. We hope that through this work, we have created the template for a tool that can make a positive impact on public health across the globe."

"Our synthetic biology pipeline for rapid sensor design and prototyping has tremendous potential for application for the Zika virus and other public health threats, enabling us to rapidly develop new diagnostics when and where they are needed most."

While this study in Cell demonstrates proof-of-concept, the team is eager to secure the necessary partners and resources to proceed to the product development phase, followed up by scaled up manufacturing and distribution so that the diagnostic tool can be deployed for use in the field.

Ultimately, the development of quick, easy-to-use, in-the-field tests for Zika and similar pathogens could help governments stay ahead of pathogen outbreaks, curbing the spread of disease and lessening the burden on already overtaxed healthcare systems.

###

To connect with Prof. Pardee, please contact:

Noreen Ahmed-Ullah
University of Toronto Media Relations
416-978-0100
media.relations@utoronto.ca

For further information, please contact:

Kat McAlpine
Wyss Institute Media Relations
katherine.mcalpine@wyss.harvard.edu

http://www.utoronto.ca 

Noreen Ahmed-Ullah | EurekAlert!

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>