Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid agent restores pleasure-seeking ahead of other antidepressant action

20.10.2014

Depression deconstructed -- NIH study

A drug being studied as a fast-acting mood-lifter restored pleasure-seeking behavior independent of – and ahead of – its other antidepressant effects, in a National Institutes of Health trial. Within 40 minutes after a single infusion of ketamine, treatment-resistant depressed bipolar disorder patients experienced a reversal of a key symptom – loss of interest in pleasurable activities – which lasted up to 14 days. Brain scans traced the agent's action to boosted activity in areas at the front and deep in the right hemisphere of the brain.


PET scans revealed that ketamine rapidly restored bipolar depressed patients' ability to anticipate pleasurable experiences by boosting activity in the dorsal anterior cingulate cortex (yellow) and related circuitry. Picture shows PET scan data superimposed on anatomical MRI image.

Credit: Carlos Zarate, M.D., NIMH Experimental Therapeutics and Pathophysiology Branch

"Our findings help to deconstruct what has traditionally been lumped together as depression," explained Carlos Zarate, M.D., of the NIH's National Institute of Mental Health. "We break out a component that responds uniquely to a treatment that works through different brain systems than conventional antidepressants – and link that response to different circuitry than other depression symptoms."

approach is consistent with the NIMH's Research Domain Criteria project, which calls for the study of functions – such as the ability to seek out and experience rewards – and their related brain systems that may identify subgroups of patients in one or multiple disorder categories.

Zarate and colleagues reported on their findings Oct. 14, 2014 in the journal Translational Psychiatry.

Although it's considered one of two cardinal symptoms of both depression and bipolar disorder, effective treatments have been lacking for loss of the ability to look forward to pleasurable activities, or anhedonia. Long used as an anesthetic and sometimes club drug, ketamine and its mechanism-of-action have lately been the focus of research into a potential new class of rapid-acting antidepressants that can lift mood within hours instead of weeks.

Based on their previous studies, NIMH researchers expected ketamine's therapeutic action against anhedonia would be traceable – like that for other depression symptoms – to effects on a mid-brain area linked to reward-seeking and that it would follow a similar pattern and time course.

To find out, the researchers infused the drug or a placebo into 36 patients in the depressive phase of bipolar disorder. They then detected any resultant mood changes using rating scales for anhedonia and depression. By isolating scores on anhedonia items from scores on other depression symptom items, the researchers discovered that ketamine was triggering a strong anti-anhedonia effect sooner – and independent of – the other effects.

Levels of anhedonia plummeted within 40 minutes in patients who received ketamine, compared with those who received placebo – and the effect was still detectable in some patients two weeks later. Other depressive symptoms improved within 2 hours. The anti-anhedonic effect remained significant even in the absence of other antidepressant effects, suggesting a unique role for the drug.

Next, the researchers scanned a subset of the ketamine-infused patients, using positron emission tomography (PET), which shows what parts of the brain are active by tracing the destinations of radioactively-tagged glucose – the brain's fuel. The scans showed that ketamine jump-started activity not in the middle brain area they had expected, but rather in the dorsal (upper) anterior cingulate cortex, near the front middle of the brain and putamen, deep in the right hemisphere.

Boosted activity in these areas may reflect increased motivation towards or ability to anticipate pleasurable experiences, according to the researchers. Depressed patients typically experience problems imagining positive, rewarding experiences – which would be consistent with impaired functioning of this dorsal anterior cingulate cortex circuitry, they said. However, confirmation of these imaging findings must await results of a similar NIMH ketamine trial nearing completion in patients with unipolar major depression.

Other evidence suggests that ketamine's action in this circuitry is mediated by its effects on the brain's major excitatory neurotransmitter, glutamate, and downstream effects on a key reward-related chemical messenger, dopamine. The findings add to mounting evidence in support of the antidepressant efficacy of targeting this neurochemical pathway. Ongoing research is exploring, for example, potentially more practical delivery methods for ketamine and related experimental antidepressants, such as a nasal spray.

However, Ketamine is not approved by the U.S. Food and Drug Administration as a treatment for depression. It is mostly used in veterinary practice, and abuse can lead to hallucinations, delirium and amnesia.

###

Reference:

Anti-anhedonic effect of ketamine and its neural correlates in treatment-resistant bipolar depression. Lally N, Nugent AC, Luckenbaugh DA, Ameli R, Roiser JP, Zarate CA. Transl Psychiatry. 2014 Oct 14;4:e469. doi: 10.1038/tp.2014.105. PMID: 25313512

About the National Institute of Mental Health (NIMH):

The mission of the NIMH is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure. For more information, visit http://www.nimh.nih.gov/.

About the National Institutes of Health (NIH):

NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

Jules Asher | Eurek Alert!

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>