Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel radiotracer shines new light on the brains of Alzheimer's disease patients

25.06.2010
New tool could aid in diagnosing Alzheimer’s, tracking disease progression and developing therapeutics

A trial of a novel radioactive compound readily and safely distinguished the brains of Alzheimer's disease patients from healthy volunteers on brain scans and opens the doors to making such imaging available beyond facilities that can manufacture their own radioactive compounds.

The results, reported by a Johns Hopkins team in the June Journal of Nuclear Medicine, could lead to better ways to distinguish Alzheimer's from other types of dementia, track disease progression and develop new therapeutics to fight the memory-ravaging disease.

Previously, the only way to peer into the brains of Alzheimer's patients was through autopsy or the use of another radioactive compound used in scans, or radiotracer, known as Pittsburgh compound or PIB. PIB is drawn to a protein known as beta-amyloid, which accumulates abnormally in the brains of Alzheimer's patients. However, PIB has a half-life of only 20 minutes, meaning that half of the substance degenerates every 20 minutes after it is made. Consequently, PIB's use is possible only at a few hospitals or academic medical centers with facilities to manufacture it since this compound degenerates so rapidly.

... more about:
»Medicine »brain scans »cognitive tests

To solve this conundrum, Dean F. Wong, M.D., Ph.D., a professor of radiology and psychiatry at the Johns Hopkins University School of Medicine, and his colleagues looked to a new radiotracer known as 18F-AV-45 (also known as florbetapir F18). This compound, based on the radioactive isotope fluorine-18, is drawn to beta-amyloid like PIB. However, unlike PIB, florbetapir has a half-life of about 110 minutes, greatly increasing its ability to be transported significant distances away from manufacturing facilities.

Testing the new compound for the first time in humans, Wong and his colleagues recruited 26 volunteers — 11 previously diagnosed with Alzheimer's disease, and 15 healthy subjects of similar age who performed normally on cognitive tests. Each of these volunteers received an injection of florbetapir, then received a PET scan of their brains. The brain scans, acquired over a 90-minute period, allowed the researchers to see the uptake of florbetapir in the brain over time.

Florbetapir had significantly heavier accumulation in the Alzheimer's patients' brains compared to the healthy volunteers, collecting in brain regions expected to be high in beta-amyloid deposits based on previous research. The results in AD patients were readily distinguishable from those of healthy subjects by 30 minutes after injection, and the differences continued for up to at least 90 minutes after injection of florbetapir. None of the AD patients or healthy volunteers suffered any ill effects from florbetapir and showed normal vital signs, electrocardiograms and blood-work after the scan.

"We could easily tell apart the two groups of patients. Those without Alzheimer's disease retained much less of the compound, and those with Alzheimer's disease retained much more of it," Wong says. "This is the first time we've been able to get results like this with a compound that can travel beyond the confines of a major academic medical center to the majority of the U.S. population."

Wong adds that florbetapir's portability could lead to numerous applications for this compound. For example, though Alzheimer's disease can usually be diagnosed from neurocognitive tests, imaging with florbetapir could help settle tricky cases in which patients might have other forms of dementia instead. The compound may also be useful in future studies designed to help solve current medical mysteries, such as which patients are most likely to progress from mild cognitive impairment to full-blown Alzheimer's disease.

Florbetapir may also be useful in trials of new experimental Alzheimer's therapeutics to measure their success, a purpose for which this compound is already being used on a limited basis, Wong says.

This study was funded in part by Avid Pharmaceuticals, maker of florbetapir, and grants from the National Institutes of Health.

Other Johns Hopkins researchers who participated in this study include Paul B. Rosenberg, M.D., Yun Zhou, Ph.D., Anil Kumar, M.B.B.S., Vanessa Raymont, M.B.Ch.B., M.S., Hayden T. Ravert, Ph.D., Robert F. Dannals, Ph.D., Ayon Nandi, M.S., James R. Brašiæ, M.D., M.P.H., Weiguo Ye, M.D., John Hilton, D.Phil., and Constantine Lyketsos, M.D .

For more information, go to:

http://www.hopkinsradiology.org/Nuclear%20Medicine/Faculty/Wong
http://www.hopkinsradiology.org/Nuclear%20Medicine/Index.html

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Medicine brain scans cognitive tests

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>