Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel radiotracer shines new light on the brains of Alzheimer's disease patients

25.06.2010
New tool could aid in diagnosing Alzheimer’s, tracking disease progression and developing therapeutics

A trial of a novel radioactive compound readily and safely distinguished the brains of Alzheimer's disease patients from healthy volunteers on brain scans and opens the doors to making such imaging available beyond facilities that can manufacture their own radioactive compounds.

The results, reported by a Johns Hopkins team in the June Journal of Nuclear Medicine, could lead to better ways to distinguish Alzheimer's from other types of dementia, track disease progression and develop new therapeutics to fight the memory-ravaging disease.

Previously, the only way to peer into the brains of Alzheimer's patients was through autopsy or the use of another radioactive compound used in scans, or radiotracer, known as Pittsburgh compound or PIB. PIB is drawn to a protein known as beta-amyloid, which accumulates abnormally in the brains of Alzheimer's patients. However, PIB has a half-life of only 20 minutes, meaning that half of the substance degenerates every 20 minutes after it is made. Consequently, PIB's use is possible only at a few hospitals or academic medical centers with facilities to manufacture it since this compound degenerates so rapidly.

... more about:
»Medicine »brain scans »cognitive tests

To solve this conundrum, Dean F. Wong, M.D., Ph.D., a professor of radiology and psychiatry at the Johns Hopkins University School of Medicine, and his colleagues looked to a new radiotracer known as 18F-AV-45 (also known as florbetapir F18). This compound, based on the radioactive isotope fluorine-18, is drawn to beta-amyloid like PIB. However, unlike PIB, florbetapir has a half-life of about 110 minutes, greatly increasing its ability to be transported significant distances away from manufacturing facilities.

Testing the new compound for the first time in humans, Wong and his colleagues recruited 26 volunteers — 11 previously diagnosed with Alzheimer's disease, and 15 healthy subjects of similar age who performed normally on cognitive tests. Each of these volunteers received an injection of florbetapir, then received a PET scan of their brains. The brain scans, acquired over a 90-minute period, allowed the researchers to see the uptake of florbetapir in the brain over time.

Florbetapir had significantly heavier accumulation in the Alzheimer's patients' brains compared to the healthy volunteers, collecting in brain regions expected to be high in beta-amyloid deposits based on previous research. The results in AD patients were readily distinguishable from those of healthy subjects by 30 minutes after injection, and the differences continued for up to at least 90 minutes after injection of florbetapir. None of the AD patients or healthy volunteers suffered any ill effects from florbetapir and showed normal vital signs, electrocardiograms and blood-work after the scan.

"We could easily tell apart the two groups of patients. Those without Alzheimer's disease retained much less of the compound, and those with Alzheimer's disease retained much more of it," Wong says. "This is the first time we've been able to get results like this with a compound that can travel beyond the confines of a major academic medical center to the majority of the U.S. population."

Wong adds that florbetapir's portability could lead to numerous applications for this compound. For example, though Alzheimer's disease can usually be diagnosed from neurocognitive tests, imaging with florbetapir could help settle tricky cases in which patients might have other forms of dementia instead. The compound may also be useful in future studies designed to help solve current medical mysteries, such as which patients are most likely to progress from mild cognitive impairment to full-blown Alzheimer's disease.

Florbetapir may also be useful in trials of new experimental Alzheimer's therapeutics to measure their success, a purpose for which this compound is already being used on a limited basis, Wong says.

This study was funded in part by Avid Pharmaceuticals, maker of florbetapir, and grants from the National Institutes of Health.

Other Johns Hopkins researchers who participated in this study include Paul B. Rosenberg, M.D., Yun Zhou, Ph.D., Anil Kumar, M.B.B.S., Vanessa Raymont, M.B.Ch.B., M.S., Hayden T. Ravert, Ph.D., Robert F. Dannals, Ph.D., Ayon Nandi, M.S., James R. Brašiæ, M.D., M.P.H., Weiguo Ye, M.D., John Hilton, D.Phil., and Constantine Lyketsos, M.D .

For more information, go to:

http://www.hopkinsradiology.org/Nuclear%20Medicine/Faculty/Wong
http://www.hopkinsradiology.org/Nuclear%20Medicine/Index.html

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Medicine brain scans cognitive tests

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>