Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation therapy after lumpectomy for breast cancer can be safely reduced to 4 weeks

05.11.2009
Researchers at Fox Chase Cancer Center found that radiation treatment for women who had a lumpectomy for early-stage breast cancer can be safely reduced to four weeks, instead of the usual six to seven weeks, by delivering a higher daily dose––greatly reducing the length of treatment time. The five-year results of the phase II study will be presented today at the annual meeting of the American Society for Radiation Oncology.

The study showed that treatment time can be shortened from the historical six to seven weeks to just four weeks using IMRT (intensity-modulated radiation therapy), a highly sophisticated system of delivering external-beam radiation.

This system uses advanced computer optimized planning and radiation delivery techniques that create more optimal dose distributions, greater sparing of the skin and lower doses to organs such as lung and heart––thus reducing potential side effects.

"When delivering high doses of radiation, we have to consider the level of side effects and the cosmetic result," explained Gary Freedman, M.D., radiation oncologist at Fox Chase. "In this phase II study, women reported acceptable side effects that were no different than would be expected from a usual, more prolonged length of treatment. In addition, with long term follow-up we see cure rates and cosmetic results that are similar to a longer six-week treatment course."

Using IMRT, this study examined the delivery of a higher daily dose of radiation over four weeks (versus a lower dose over six to seven weeks). Another way of reducing treatment length was by incorporating a "boost" into the same four weeks. The lumpectomy site where the tumor was removed is usually treated with a high-dose radiation "boost." The standard "boost" is typically administered after the five weeks of whole breast irradiation and can add another one to two weeks to the treatment time.

Freedman and his colleagues demonstrated that in addition to safely increasing the dose to the whole breast during the four-week period, it is possible to deliver the "boost" concurrently, eliminating the extra two weeks.

"This more accelerated treatment regimen should be an option for women who want to be treated in a shorter period of time," says Freedman. "This may particularly appeal to women who drive a long distance for radiation, have busy schedules at home or work, or have a large insurance co-pay for each daily radiation treatment."

Freedman cautioned that this treatment schedule may not be for all women. "There may be patients who are uncomfortable with the idea of an accelerated treatment and want to be treated with a more conventional six to seven week course of treatment," he says. "In addition, we need more research to determine which women are ideal candidates for this treatment because of differences in anatomy or other treatments for their breast cancer."

The study included 75 women treated with 2.25 Gy for 20 days (versus 2 Gy per day with conventional therapy) and a 2.8 Gy boost concurrently (versus sequentially delivering the boost after whole breast irradiation). The risk of recurrence within five years in the treated breast was low–.4%––which compares favorably to results with conventional radiation. In addition, patients and their physicians considered the cosmetic results good or excellent in most women.

Fox Chase Cancer Center is one of the leading cancer research and treatments centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, visit Fox Chase's web site at www.fccc.edu or call 1-888-FOX-CHASE or 1-888-369-2427.

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>