Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New radiation-free targeted therapy detects and eliminates breast cancer tumors in mice

01.04.2009
Caltech researcher helps develop technique that homes in on aggressive, difficult-to-treat HER2+ breast cancer cells

Combining a compound known as a gallium corrole with a protein carrier results in a targeted cancer therapy that is able to detect and eliminate tumors in mice with seemingly fewer side effects than other breast-cancer treatments, says a team of researchers from the California Institute of Technology (Caltech), the Israel Institute of Technology (Technion) and the Cedars-Sinai Medical Center.

A paper describing their work is highlighted in this week's issue of the online edition of the Proceedings of the National Academy of Sciences (PNAS).

Corroles have very similar structures to the porphyrin molecules used in a well-studied cancer treatment known as photodynamic therapy, or PDT, in which porphyrin compounds injected into the body are exposed to specific wavelengths of laser light. The light prompts the porphyrins to produce active, tumor-killing oxygen radicals.

The difference between porphyrins and corroles, says Harry Gray, Caltech's Arnold O. Beckman Professor of Chemistry and founding director of the Beckman Institute, is that some corroles don't require a laser boost to turn lethal. "The striking thing about gallium corroles is that they apparently kill cancer cells in the dark," says Gray. "We don't yet know exactly how this works, but what we've seen so far tells us that it does work."

He notes that "ongoing work in our laboratories focuses on testing our leading hypotheses for elucidating the mechanism of action."

In the experiments described in the PNAS paper, the team paired a gallium corrole with a carrier protein, then aimed it at cells that carry the human epidermal growth factor receptor 2 (HER2). The presence of a HER2 receptor is the hallmark of about 25 percent of breast cancers, and marks those tumors as particularly aggressive and difficult to treat.

In trials in mice, the targeted corrole was able to shrink tumors at doses five times lower than that of the standard chemotherapeutic agent for HER2-positive tumors, a drug called doxorubicin. In contrast with doxorubicin, the corrole was injected into the bloodstream, rather than directly into the tumor.

"We looked at three groups of mice with human tumors," explains paper coauthor Lali Medina-Kauwe, an assistant professor of medicine at the David Geffen School of Medicine at UCLA, and a faculty research scientist in the Department of Biomedical Science at Cedars-Sinai Medical Center in Los Angeles. "In one, we introduced just the protein carrier, without the corrole; tumor growth in those mice did not change. In other mice, we gave the corrole without the carrier protein; this led to some tumor suppression. But it was the last group, the ones that got the corrole with the carrier protein, that experienced the most therapeutic effect."

"The fact that we can target this compound means we can give it at very low concentrations," adds coauthor Daniel Farkas, director of Cedar-Sinai's Minimally Invasive Surgical Technologies Institute. "Using lower concentrations means less toxicity. Doxorubicin tends to have significant heart toxicity; this therapy seems likely to be much less damaging to the heart."

In addition, adds Medina-Kauwe, targeted compounds can seek out tumors wherever they may be. "One of the beauties of targeting," she says, " is that we can go after metastatic tumors that are too small to be seen."

These targeted gallium corroles are not only effective, they're also easy to study, notes Zeev Gross, the Reba May & Robert D. Blum Academic Chair at Technion, the Israeli Institute of Technology, in Haifa, and another of the paper's coauthors. "In most cases, if people want to get a closer look at a drug in vivo, they have to attach a fluorescent probe to it--and that turns it into a different molecule. But in our case, the active molecule we're tracking does the fluorescing. We get to track the original, unmodified molecule and are hence able to follow its distribution among different organs in live animals."

The difficulty in getting to this point, notes Gray, is that corroles have been challenging to synthesize. "Then Zeev came up with a powerful synthetic method to make corroles," he says. "We went from being able to make a couple of milligrams in two years to being able to make two grams in two days. It really puts corroles on the map."

Gray and Gross further add, "It is truly fulfilling to see how the close collaboration between our research groups at Caltech and the Technion, which started 10 years ago with a focus on developing the fundamental science of corroles, led to pharmaceutical utility when we joined forces with Medina-Kauwe and Farkas, who are experts in cellular biology and biomedical imaging technologies."

The work described in the paper, "Tumor detection and elimination by a targeted gallium corrole," was supported by grants from the National Science Foundation, the National Institutes of Health, the U.S. Department of Defense, Susan G. Komen for the Cure, the Donna and Jesse Garber Award, the Gurwin Foundation, the United States-Israel Binational Science Foundation, and by the U.S. Navy Bureau of Medicine and Surgery.

In addition to the researchers mentioned above, the other scientists contributing to this work include senior scientist Atif Mahammed from Technion, and research associates Hasmik Agadjanian and Altan Rentsendorj, postdoc Vinod Valluripalli, and graduate students Jun Ma and Jae Youn Hwang from Cedars-Sinai.

Lori Oliwenstein | EurekAlert!
Further information:
http://www.caltech.edu
http://pr.caltech.edu/media

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>