Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation dose level affects size of lesions seen on chest CT images

17.04.2013
The estimated size of chest lymph nodes and lung nodules seen on CT images varies significantly when the same nodes or nodules are examined using lower versus higher doses of radiation, a new study shows. The size of lymph nodes and lung nodules is an important determinant of treatment and treatment success.

The study, conducted at Massachusetts General Hospital in Boston, used a 3D image processing tool to quantitatively measure the volume of the lymph nodes and lung nodules.

"We found that lymph node volumes were estimated at 30% lower in five cases and 10% higher in 15 cases of low dose compared to higher dose images," said Dr. Beth Vettiyil, a lead author of the study. The study found that the calculated volume of lung nodules was 46% lower in nine cases and 34% higher in 10 cases on lower dose as compared to high dose images.

"We were surprised that in both the lymph nodes and lung nodules there were cases in which the lower dose picked up lower lesion volumes as well as higher lesion volumes when compared to the higher dose scans," said Dr. Vettiyil. "We think that increased image noise (graininess of the image) on the lower dose scans may have caused the lesion volumes to vary so significantly," she said.

The goal of the study was to explore the possibility of using image processing tools to better delineate lesions at low radiation doses without missing any clinical information, noted Dr. Vettiyil. "The study indicates that radiologists can use these types of quantitative tools to supplement them in their measurements, but the use of such software measurements without the radiologist's clinical correlation might not be advisable at this stage," said Dr. Vettiyil.

The study will be presented April 17 during the ARRS Annual Meeting in Washington, DC.

Samantha Schmidt | EurekAlert!
Further information:
http://www.arrs.org

Further reports about: Radiation image processing lung nodules lymph node lymph nodes

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>