Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Watchful waiting" has a new set of eyes

03.12.2010
New prostate cancer imaging shows real-time tumor metabolism

A UCSF research collaboration with GE Healthcare has produced the first results in humans of a new technology that promises to rapidly assess the presence and aggressiveness of prostate tumors in real time, by imaging the tumor’s metabolism.

This is the first time researchers have used this technology to conduct real-time metabolic imaging in a human patient and represents a revolutionary approach to assessing the precise outlines of a tumor, its response to treatment and how quickly it is growing.

Data on the first four patients will be presented on Dec. 2 at the Radiology Society of North America’s weeklong annual conference.

The initial results validate extensive preclinical research that has linked the speed at which tumors metabolize nutrients to the aggressiveness of their growth. The new imaging technique also has been used to show early biochemical changes in animal tumors in real time as they respond to medication therapy, long before a physical change occurs.

So far, the technology has produced the same response in human patients’ tumors as it did in laboratory studies, even at the lowest dose, according to Sarah Nelson, PhD, a professor of Radiology and Biomedical Imaging and a member of the California Institute for Quantitative Biosciences (QB3) at UCSF.

“This is a key milestone that could dramatically change clinical treatment for prostate cancer and many other tumors,” Nelson said. “We had shown this worked in animal models and tissues samples. Now, in men, we are seeing exactly the type of results we had hoped for.”

For an oncologist, that means immediate feedback on whether a patient’s therapy is working, either during standard treatment or in a clinical trial.

“If we can see whether a therapy is effective in real time, we may be able to make early changes in that treatment that could have a very real impact on a patient’s outcome and quality of life,” said Andrea Harzstark, MD, an oncologist with the UCSF Helen Diller Family Comprehensive Cancer Center who is leading the clinical aspects of the current study.

More than 200,000 men are diagnosed with prostate cancer each year and 28,000 die from it, making it one of the most common cancer in men nationwide and also one of the leading causes of cancer death in men, according to the Centers for Disease Control.

Yet the disease ranges widely in its rate of growth and aggressiveness, according to John Kurhanewicz, PhD, a UCSF expert in prostate cancer imaging. As a result, there is great debate over the ideal strategy for treating the disease, he said, leaving patients with a difficult and potentially life-changing decision over how aggressively to respond to the disease.

“This test could give both physicians and patients the information they need to make that decision,” said Kurhanewicz, whose work with Dan Vigneron, PhD, and their colleagues from the UCSF Department of Radiology and Biomedical Imaging first linked a prostate tumor’s production of lactate to tumor aggressiveness. Other researchers also have linked that lactate production to tumor aggressiveness and response to therapy in other cancers.

The method uses compounds involved in normal tissue function – in this case, pyruvate, which is a naturally occurring by-product of glucose, and lactate, also known as lactic acid – and uses newly developed equipment to increase the visibility of those compounds by a factor of 50,000 in a magnetic resonance imaging (MRI) scanner.

That process requires pyruvate to be prepared in a strong magnetic field at a temperature of minus 272° C, then rapidly warmed to body temperature and transferred to the patient in an MRI scanner before the polarization decays back to its native state.

The result is a highly defined and clear image of the tumor’s outline, as well as a graph of the amount of pyruvate in the tumor and the rate at which the tumor converts the pyruvate into lactate.

The sterile production process requires a dedicated clinical pharmacist with the knowledge of both quality control and of clinical practice. As the birthplace of the field of clinical pharmacy and one of only a handful of schools nationwide with drug production expertise, the UCSF School of Pharmacy and contributions of Marcus Ferrone, PharmD, and his colleagues in the Drug Products Services Laboratory were integral to this process.

The procedure must take place within minutes, which meant integrating a clean room into the scanning facility. QB3 also worked with GE Healthcare in designing Byers Hall, in which the Surbeck Laboratory of Advanced Imaging is housed, to accommodate the extremely strong magnetic field of the MRI scanner and enable time-sensitive experiments.

“All of that insight is why we moved this technology to Northern California,” said Jonathan Murray, general manager, Metabolic Imaging at GE Healthcare. “This is a huge accomplishment UCSF and QB3 have achieved. They brought together the best engineering from UC Berkeley and the best bioscience and pharmacy knowledge from UCSF, and are now demonstrating the technology in a world-renowned academic medical center. We are delighted with the speed of progress of this collaboration. The science is very exciting.”

The first trial involves men with prostate cancer involved in the “watchful waiting” phase of treatment, Nelson said. Future studies will directly compare these data with the results from surgically removed tumors and will look at how specific therapies change tumor metabolism. UCSF also will be studying the process for use in brain tumor patients.

The project’s funding through the National Institute of Biomedical Imaging and Bioengineering, in the National Institutes of Health, was critical in adapting this technology for humans and developing new ways to obtain the MR metabolic imaging data. The project received further support from the American Recovery & Reinvestment Act and the UC Discovery Program.

Initial development of this instrumentation and its demonstration of proof of principle was conducted by Jan Henrik Ardenkjaer-Larsen, Klaes Golman and other colleagues from across GE. UCSF customized that principle and obtained the Investigational New Drug (IND) approval from the Food and Drug Administration to use the hyperpolarized pyruvate in humans.

These concepts are still investigational and not being offered for sale, nor have they been cleared or approved by the FDA for commercial availability.

About GE Healthcare
GE Healthcare provides transformational medical technologies and services that are shaping a new age of patient care. Our broad expertise in medical imaging and information technologies, medical diagnostics, patient monitoring systems, drug discovery, biopharmaceutical manufacturing technologies, performance improvement and performance solutions services help our customers to deliver better care to more people around the world at a lower cost. In addition, we partner with healthcare leaders, striving to leverage the global policy change necessary to implement a successful shift to sustainable healthcare systems.

Our “healthymagination” vision for the future invites the world to join us on our journey as we continuously develop innovations focused on reducing costs, increasing access and improving quality around the world. Headquartered in the United Kingdom, GE Healthcare is a unit of General Electric Company (NYSE: GE). Worldwide, GE Healthcare employees are committed to serving healthcare professionals and their patients in more than 100 countries. For more information about GE Healthcare, visit our website at www.gehealthcare.com.

About QB3 and UCSF
QB3 is a cooperative effort among private industry and more than 200 scientists at UCSF, UC Berkeley and UC Santa Cruz. One of four California technology institutes, QB3 harnesses the quantitative sciences of information technology, imaging and engineering to integrate and enhance scientific understanding of biological systems, enabling scientists to tackle problems that have been previously unapproachable. Please visit www.qb3.org.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For more information on UCSF, visit www.ucsf.edu. For specific information on UCSF imaging, visit: www.radiology.ucsf.edu/research.

Follow UCSF on Twitter at http://twitter.com/ucsf

Kristen Bole | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>