Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


"Unknown" neurological disorder often incorrectly diagnosed

The very serious hereditary disease HDLS was discovered in 1984 in Sweden. Many HDLS patients are still incorrectly diagnosed with Alzheimer’s disease, MS or Parkinson’s disease, but researchers at the Sahlgrenska Academy, University of Gothenburg, Sweden, have now developed a more certain diagnosis method - and are seeking to find a treatment for the "unknown" neurological disorder.
In 1984, Sahlgrenska Professor Oluf Andersen for the first time described a new, hereditary and very serious neurological disease that was given the name hereditary diffuse leukoencephalopathy with spheroids, usually abbreviated HDLS.

The disease has been perceived as very uncommon. However, a HDLS international consortium with headquarter at the Mayo Clinic in collaboration with the researcher Christina Sundal at the Sahlgrenska Academy, University of Gothenburg, and her research colleagues have now succeeded in identifying the genetic mutation, called CSF1R, that is believed to cause the disease.

The discovery, which is presented in a dissertation at the Sahlgrenska Academy, , University of Gothenburg, has resulted in a new gene test that has led to more than 100 new cases of HDLS being confirmed in the U.S. and Japan in recent months.

In Sweden, HDLS has to-date been limited to one single family, which currently consists of 166 individuals of which 15 have been diagnosed with HDLS. There are many unreported cases, and since the Swedish family was found negative for the CSF1R gene mutation Dr. Christina Sundal and her research team are still doing genetic testing to find additional gene mutation that are causative for the Swedish family. Results of this analysis will soon be published.

Since knowledge of the disease is limited among doctors, patients with HDLS are often incorrectly diagnosed with Alzheimer’s disease, MS or atypical Parkinson’s disease, and a study is now under way where 100 Swedish MS patients are undergoing genetic analysis to see if their disease is actually HDLS.

The basic Swedish research has been followed up internationally - most successfully by researchers at the Mayo Clinic in Florida, who have now gathered information and samples from HDLS families around the world. In 2011, Christina Sundal, a doctoral student at the Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, was invited to the Mayo Clinic to conduct research on HDLS.

Christina Sundal is now presenting her dissertation, which shows that the symptoms and characteristic changes of HDLS can be distinguished on magnetic resonance images of the brain. Together with the discovery of the CSF1R gene mutation, this has revolutionized the possibilities of making the right diagnosis and developing future treatments.

"Our research has shown that HDLS is often incorrectly diagnosed. We hope that the disease will now be easier to identify, and that it will eventually be possible to use the CSF1R gene mutation to develop new medicines that can treat both HDLS and other similar neurodegenerative diseases," says Christina Sundal.

The 36-year-old researcher, raised in Bergen, Norway, is now being given the responsibility to lead the continued HDLS research at the Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital.

"I hope that our research will lead us to find a treatment in the future that can stop this disease, which is very devastating and strikes many families hard," says Christina Sundal.

Those afflicted by HDLS generally have one parent who had the same disease: the risk of being afflicted if one has a parent with HDLS is a full 50 percent. Most patients were completely healthy until the age of 40 when they are struck by various neurological and psychiatric symptoms. In most cases, there is a rapid degradation where patients after just a few years exhibit dementia, major motor difficulty and death. Today, there is no effective medication for the disease.

Christina Sundal, Doctoral Candidate at the Institution for Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg.

Annika Koldenius | idw
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>