Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Idiopathic QT interval prolongation" linked to a five-fold increase in sudden death risk

06.02.2009
Rhythm abnormality Of Unknown Origin Strongly Predicts Sudden Death Risk In Heart Disease Patients

Researchers conducting a large, ongoing study to improve detection and prevention of sudden cardiac death were surprised to discover that a specific heart rhythm abnormality – idiopathic QT interval prolongation – increased risk five-fold among patients with coronary artery disease.

“More than 80 percent of all cases of sudden cardiac death occur in people who have significant coronary artery disease, but we currently do not have a medical test that consistently identifies patients at risk,” said Sumeet S. Chugh, M.D., associate director of the Cedars-Sinai Heart Institute and director of Clinical Electrophysiology. Chugh is first author of an article in Circulation, now appearing online ahead of print. This research was conducted with colleagues in the Emergency Medicine and Pathology Departments at Oregon Health and Science University in Portland, as part of the ongoing Oregon Sudden Unexpected Death Study.

“Abnormal QT prolongation has significant potential for evaluating risk and developing prevention strategies, but there are many factors – some known and some not known – that contribute to QT prolongation. Diabetes and the use of certain medications were significant predictors of QT interval prolongation and sudden cardiac death risk in our study. However, the most interesting and somewhat unexpected finding was that abnormally prolonged QT interval of unknown etiology – independent of diabetes, medications and other factors – was an even more powerful predictor of sudden cardiac death, with a five-fold increase in odds,” said Chugh, who holds the Pauline and Harold Price Chair in Cardiac Electrophysiology Research.

The researchers noted that several gene variations have been linked to prolonged QT intervals, and the discovery of new genetic associations are likely to improve risk-assessment and intervention strategies. “The continued identification of gene variants that determine QT interval duration has become an important scientific priority in the field,” Chugh said.

“QT interval” refers to electrical activity that occurs in the main pumping chambers of the heart, the ventricles. It includes the Q, R, S, and T waves seen on an electrocardiogram. Unlike heart attacks, which are typically caused by clogged coronary arteries, sudden cardiac arrest is the result of defective electrical impulses.

In 2002, Chugh launched the Oregon Sudden Unexpected Death Study, an ambitious population study involving 16 hospitals serving a community of about 1 million residents in the Portland, Ore., metropolitan area. This and related research projects are continuing to shed light on the incidence, demographics, genetic defects, risk factors, triggers and prevention techniques related to sudden cardiac arrest, which causes nearly instantaneous death in 90 percent of cases.

Chugh directed the Cardiac Arrhythmia Center at Oregon Health and Science University prior to joining Cedars-Sinai in late 2008. This study was funded by the National Institutes of Health/National Heart, Lung, and Blood Institute and a Hopkins-Reynolds Clinical Cardiovascular Center grant.

Citation: Circulation, “Determinants of Prolonged QT Interval and Their Contribution to Sudden Death Risk in Coronary Artery Disease: The Oregon Sudden Unexpected Death Study,” published online ahead of print Jan. 26, 2009.

Sandy Van | prpacific.com
Further information:
http://www.csmc.edu
http://www.cedars-sinai.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>