Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quicker testing for viral infections saves money and lives

10.10.2011
A new method for quickly identifying individual viruses and recognising how they bind to host cells may become a vital tool in the early control of winter vomiting disease and other virus-based diseases.

In the west, this means saving money and reducing stress on health-care systems. In developing countries, this means saving lives. The method has been jointly developed by researchers at Chalmers and the Sahlgrenska Academy, University of Gothenburg, Sweden.

Every year hundreds of thousands of children in developing countries suffer from winter vomiting disease or related viral infections. The disease also hits the western world's health care services hard, closing departments and delaying treatments.

All viral infections are caused by an individual virus binding to specific receptors on the surface of a host cell. The thousands of copies of the virus which the host cell produces, quickly attack new cells and illness becomes inevitable. Early identification and understanding of how a virus binds to the cell's surface is vital in overcoming the disease.

Researchers at Chalmers and at the University of Gothenburg's Sahlgrenska Academy have now taken an important step towards both making diagnosis more effective and improving options for developing virus-inhibiting drugs. The results, soon to be published in the prestigious journal Physical Review Letters, are based on a method developed at Chalmers.

“Briefly, the method makes it possible to identify and study individual viruses, 40 nanometres in size. No other method, based on similar simple analysis, provides the same level of sensitivity without the virus having been modified in some way before the analysis,” says Professor Fredrik Höök who led the study.

At the Sahlgrenska Academy, Professor Göran Larson has succeeded in identifying a number of sugar molecules which bind strongly to the particular virus that causes winter vomiting disease. This knowledge has now been combined with the methodology developed at Chalmers and the result is an opportunity to study in detail the very first contact between a virus and the surface of the cell which contains a number of different sugar molecules.

The increased level of sensitivity offered by this method may make it central to the assessment of drug candidates developed with the aim of preventing the virus from binding to its host cell.

By looking at the weak bindings which are the precursor to the strong interaction which causes the virus to be taken up by the cell, the researchers will also be able to study how the virus mutates year on year. These mutations are one of the causes of increased intensity of outbreaks, making quick diagnosis of new viral strains of vital importance.

Furthermore, as the individual virus can be identified, the researchers hope that it will be possible to attack the very small quantities of virus responsible for spreading the disease, e.g. via drinking water, at an earlier stage than is possible today.

The research is supported by Vinnova, the Swedish Foundation for Strategic Research and Chalmers’ Area of Advance Nanoscience and Nanotechnology.

For more information, please contact: 

Professor Göran Larson
Telephone: +46 31 342 13 30, +46 70 625 02 16
Email: goran.larson@clinchem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>