Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quicker testing for viral infections saves money and lives

10.10.2011
A new method for quickly identifying individual viruses and recognising how they bind to host cells may become a vital tool in the early control of winter vomiting disease and other virus-based diseases.

In the west, this means saving money and reducing stress on health-care systems. In developing countries, this means saving lives. The method has been jointly developed by researchers at Chalmers and the Sahlgrenska Academy, University of Gothenburg, Sweden.

Every year hundreds of thousands of children in developing countries suffer from winter vomiting disease or related viral infections. The disease also hits the western world's health care services hard, closing departments and delaying treatments.

All viral infections are caused by an individual virus binding to specific receptors on the surface of a host cell. The thousands of copies of the virus which the host cell produces, quickly attack new cells and illness becomes inevitable. Early identification and understanding of how a virus binds to the cell's surface is vital in overcoming the disease.

Researchers at Chalmers and at the University of Gothenburg's Sahlgrenska Academy have now taken an important step towards both making diagnosis more effective and improving options for developing virus-inhibiting drugs. The results, soon to be published in the prestigious journal Physical Review Letters, are based on a method developed at Chalmers.

“Briefly, the method makes it possible to identify and study individual viruses, 40 nanometres in size. No other method, based on similar simple analysis, provides the same level of sensitivity without the virus having been modified in some way before the analysis,” says Professor Fredrik Höök who led the study.

At the Sahlgrenska Academy, Professor Göran Larson has succeeded in identifying a number of sugar molecules which bind strongly to the particular virus that causes winter vomiting disease. This knowledge has now been combined with the methodology developed at Chalmers and the result is an opportunity to study in detail the very first contact between a virus and the surface of the cell which contains a number of different sugar molecules.

The increased level of sensitivity offered by this method may make it central to the assessment of drug candidates developed with the aim of preventing the virus from binding to its host cell.

By looking at the weak bindings which are the precursor to the strong interaction which causes the virus to be taken up by the cell, the researchers will also be able to study how the virus mutates year on year. These mutations are one of the causes of increased intensity of outbreaks, making quick diagnosis of new viral strains of vital importance.

Furthermore, as the individual virus can be identified, the researchers hope that it will be possible to attack the very small quantities of virus responsible for spreading the disease, e.g. via drinking water, at an earlier stage than is possible today.

The research is supported by Vinnova, the Swedish Foundation for Strategic Research and Chalmers’ Area of Advance Nanoscience and Nanotechnology.

For more information, please contact: 

Professor Göran Larson
Telephone: +46 31 342 13 30, +46 70 625 02 16
Email: goran.larson@clinchem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>