Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick test for Ebola

24.02.2015

Simple paper strip can diagnose Ebola and other fevers within 10 minutes.

When diagnosing a case of Ebola, time is of the essence. However, existing diagnostic tests take at least a day or two to yield results, preventing health care workers from quickly determining whether a patient needs immediate treatment and isolation.

A new test from MIT researchers could change that: The device, a simple paper strip similar to a pregnancy test, can rapidly diagnose Ebola, as well as other viral hemorrhagic fevers such as yellow fever and dengue fever.

"As we saw with the recent Ebola outbreak, sometimes people present with symptoms and it's not clear what they have," says Kimberly Hamad-Schifferli, a visiting scientist in MIT's Department of Mechanical Engineering and a member of the technical staff at MIT's Lincoln Laboratory. "We wanted to come up with a rapid diagnostic that could differentiate between different diseases."

Hamad-Schifferli and Lee Gehrke, the Hermann L.F. von Helmholtz Professor in MIT's Institute for Medical Engineering and Science (IMES), are the senior authors of a paper describing the new device in the journal Lab on a Chip. The paper's lead author is IMES postdoc Chun-Wan Yen, and other authors are graduate student Helena de Puig, IMES postdoc Justina Tam, IMES instructor Jose Gomez-Marquez, and visiting scientist Irene Bosch.

Color-coded test

Currently, the only way to diagnose Ebola is to send patient blood samples to a lab that can perform advanced techniques such as polymerase chain reaction (PCR), which can detect genetic material from the Ebola virus. This is very accurate but time-consuming, and some areas of Africa where Ebola and other fevers are endemic have limited access to this kind of technology.

The new device relies on lateral flow technology, which is used in pregnancy tests and has recently been exploited for diagnosing strep throat and other bacterial infections. Until now, however, no one has applied a multiplexing approach, using multicolored nanoparticles, to simultaneously screen for multiple pathogens.

"For many hemorrhagic fever viruses, like West Nile and dengue and Ebola, and a lot of other ones in developing countries, like Argentine hemorrhagic fever and the Hantavirus diseases, there are just no rapid diagnostics at all," says Gehrke, who began working with Hamad-Schifferli four years ago to develop the new device.

Unlike most existing paper diagnostics, which test for only one disease, the new MIT strips are color-coded so they can be used to distinguish among several diseases. To achieve that, the researchers used triangular nanoparticles, made of silver, that can take on different colors depending on their size.

The researchers created red, orange, and green nanoparticles and linked them to antibodies that recognize Ebola, dengue fever, and yellow fever. As a patient's blood serum flows along the strip, any viral proteins that match the antibodies painted on the stripes will get caught, and those nanoparticles will become visible. This can be seen by the naked eye; for those who are colorblind, a cellphone camera could be used to distinguish the colors.

"When we run a patient sample through the strip, if you see an orange band you know they have yellow fever, if it shows up as a red band you know they have Ebola, and if it shows up green then we know that they have dengue," Hamad-Schifferli says.

This process takes about 10 minutes, allowing health care workers to rapidly perform triage and determine if patients should be isolated, helping to prevent the disease from spreading further.

Faster triage

The researchers envision their new device as a complement to existing diagnostic technologies, such as PCR.

"If you're in a situation in the field with no power and no special technologies, if you want to know if a patient has Ebola, this test can tell you very quickly that you might not want to put that patient in a waiting room with other people who might not be infected," says Gehrke, who is also a professor of microbiology and immunology at Harvard Medical School. "That initial triage can be very important from a public health standpoint, and there could be a follow-up test later with PCR or something to confirm."

The researchers hope to obtain Food and Drug Administration approval to begin using the device in areas where the Ebola outbreak is still ongoing. In order to do that, they are now testing the device in the lab with engineered viral proteins, as well as serum samples from infected animals.

This type of device could also be customized to detect other viral hemorrhagic fevers or other infectious diseases, by linking the silver nanoparticles to different antibodies.

"Thankfully the Ebola outbreak is dying off, which is a good thing," Gehrke says. "But what we're thinking about is what's coming next. There will undoubtedly be other viral outbreaks. It might be Sudan virus, it might be another hemorrhagic fever. What we're trying to do is develop the antibodies needed to be ready for the next outbreak that's going to happen."

The research was funded by the National Institute of Allergy and Infectious Disease.

Media Contact

Sarah McDonnell
s_mcd@mit.edu
617-253-8923

 @MIT

http://web.mit.edu/newsoffice 

Sarah McDonnell | EurekAlert!

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>