Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Quadrapeutics' works in preclinical study of hard-to-treat tumors

02.06.2014

Animal tests show Rice-developed technology effective against aggressive cancer

The first preclinical study of a new Rice University-developed anti-cancer technology found that a novel combination of existing clinical treatments can instantaneously detect and kill only cancer cells -- often by blowing them apart -- without harming surrounding normal organs.


The first preclinical study of the anti-cancer technology "quadrapeutics" found it to be 17 times more efficient than conventional chemoradiation therapy against aggressive, drug-resistant head and neck tumors.

Credit: D. Lapotko/Rice University

The research, which is available online this week Nature Medicine, reports that Rice's "quadrapeutics" technology was 17 times more efficient than conventional chemoradiation therapy against aggressive, drug-resistant head and neck tumors.

The work was conducted by researchers from Rice, the University of Texas MD Anderson Cancer Center and Northeastern University.

"We address aggressive cancers that cannot be efficiently and safely treated today," said Rice scientist Dmitri Lapotko, the study's lead investigator. "Surgeons often cannot fully remove tumors that are intertwined with important organs. Chemotherapy and radiation are commonly used to treat the residual portions of these tumors, but some tumors become resistant to chemoradiation. Quadrapeutics steps up when standard treatments fail. At the same time, quadrapeutics complements current approaches instead of replacing them."

Lapotko said quadrapeutics differs from other developmental cancer treatments in that it radically amplifies the intracellular effect of drugs and radiation only in cancer cells. The quadrapeutic effects are achieved by mechanical events -- tiny, remotely triggered nano-explosions called "plasmonic nanobubbles." Plasmonic nanobubbles are non-stationary vapors that expand and burst inside cancer cells in nanoseconds in response to a short, low-energy laser pulse. Plasmonic nanobubbles act as a "mechanical drug" against cancer cells that cannot be surgically removed and are otherwise resistant to radiation and chemotherapy.

In prior studies, Lapotko showed he could use plasmonic nanobubbles alone to literally blow cells apart. In quadrapeutics, his team is using them to detect and kill cancer cells in three ways. In cancer cells that survive the initial explosions, the bursting nanobubbles greatly magnify the local doses of both chemotherapy drugs and radiation. All three effects -- mechanical cell destruction, intracellular drug ejection and radiation amplification -- occur only in cancer cells and do not harm vital healthy cells nearby.

To administer quadrapeutics, the team uses four clinically approved components: chemotherapy drugs, radiation, near-infrared laser pulses of low energy and colloidal gold.

"Quadrapeutics shifts the therapeutic paradigm for cancer from materials -- drugs or nanoparticles -- to mechanical events that are triggered on demand only inside cancer cells," Lapotko said. "Another strategic innovation is in complementing current macrotherapies with microtreatment. We literally bring surgery, chemotherapies and radiation therapies inside cancer cells."

The first component of quadrapeutics is a low dose of a clinically validated chemotherapy drug. The team tested two: doxorubicin and paclitaxel. In each case, the scientists used encapsulated versions of the drug that were tagged with antibodies designed to target cancer cells. Thanks to the magnifying effect of the plasmonic nanobubbles, the intracellular dose -- the amount of the drug that is active inside cancer cells -- is very high even when the patient receives only a few percent of the typical clinical dose.

The second component is an injectable solution of nontoxic gold colloids, tiny spheres of gold that are thousands of times smaller than a living cell. Quadrapeutics represents a new use of colloidal gold, which has been used for decades in the clinical treatment of arthritis. In quadrapeutics, the gold colloids are tagged with cancer-specific clinically approved antibodies that cause them to accumulate and cluster together inside cancer cells. These gold "nanoclusters" do nothing until activated by a laser pulse or radiation.

The third quadrapeutic component is a short near-infrared laser pulse that uses 1 million times less energy that a typical surgical laser. A standard endoscope delivers the laser pulse to the tumor, where the gold nanoclusters convert the laser energy into plasmonic nanobubbles.

The fourth component is a single, low dose of radiation. The gold nanoclusters amplify the deadly effects of radiation only inside cancer cells, even when the overall dose to the patient is just a few percent of the typical clinical dose.

"What kills the most-resistant cancer cells is the intracellular synergy of these components and the events we trigger in cells," Lapotko said. "This synergy showed a 100-fold amplification of the therapeutic strength of standard chemoradiation in experiments on cancer cell cultures."

In the Nature Medicine study, the team tested quadrapeutics against head and neck squamous cell carcinoma (HNSCC), an aggressive and lethal form of cancer that had grown resistant to both chemotherapy drugs and radiation. Quadrapeutics proved so deadly against HNSCC tumors that a single treatment using just 3 percent of the typical drug dose and 6 percent of the typical radiation dose effectively eliminated tumors in mice within one week of the administration of quadrapeutics.

Lapotko, a faculty fellow in biochemistry and cell biology and in physics and astronomy, said he is working with colleagues at MD Anderson and Northeastern to move as rapidly as possible toward prototyping and a human clinical trial. In clinical applications, quadrapeutics will be applied as either a stand-alone or intra-operative procedure using standard endoscopes and other clinical equipment and encapsulated drugs such as Doxil or Lipoplatin. Though the current study focused on head and neck tumors, Lapotko said quadrapeutics is a universal technology that can be applied for local treatment of various solid tumors, including other hard-to-treat types of brain, lung and prostate cancer. He said it might also prove especially useful for treating children due to its safety.

"The combination of aggressiveness and drug and radiation resistance is particularly problematic in tumors that cannot be fully resected, and new efficient solutions are needed," said Dr. Ehab Hanna, a surgeon and vice chair of the Department of Head and Neck Surgery at MD Anderson, who was not involved with the testing or development of quadrapeutics. "Technologies that can merge and amplify the effects of surgery, drugs and radiation at the cellular level are ideal, and the preclinical results for quadrapeutics make it a promising candidate for clinical translation."

###

Study co-authors included Rice research scientist Ekaterina Lukianova-Hleb, MD Anderson researchers Xiangwei Wu and Xiaoyang Ren and Northeastern researchers Vladimir Torchilin and Rupa Sawant.

The research was supported by the National Institutes of Health, the National Science Foundation and the Virginia and L.E. Simmons Family Foundation.

VIDEO is available at: http://youtu.be/_pgH6YMby3M

High-resolution IMAGES are available for download at:

http://news.rice.edu/wp-content/uploads/2014/05/0606_QUAD-diagram-lg.jpg

CAPTION: The first preclinical study of the anti-cancer technology "quadrapeutics" found it to be 17 times more efficient than conventional chemoradiation therapy against aggressive, drug-resistant head and neck tumors.

CREDIT: D. Lapotko/Rice University

http://news.rice.edu/wp-content/uploads/2012/04/0406_NANOBUBBLES-1.jpg

CAPTION: Dmitri Lapotko

CREDIT: Jeff Fitlow/Rice University

http://news.rice.edu/wp-content/uploads/2014/05/0606_QUAD-Hleb-lg.jpg

CAPTION: Ekaterina Lukianova-Hleb

CREDIT: Jeff Fitlow/Rice University

A copy of the Nature Medicine paper is available at: http://dx.doi.org/10.1038/nm.3484

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Jade Boyd | Eurek Alert!

Further reports about: Lapotko Medicine aggressive chemotherapy drugs nanobubbles neck treatments tumors

More articles from Health and Medicine:

nachricht It don't mean a thing if the brain ain't got that swing
28.07.2015 | University of California - Berkeley

nachricht MSU scientists set sights on glaucoma medication to treat TB
24.07.2015 | Michigan State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>