Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting malaria on the SHELPH

26.02.2013
Experts have disabled a unique member of the signalling proteins which are essential for the development of the malaria parasite.

They have produced a mutant lacking the ancient bacterial Shewanella-like protein phosphatase known as SHLP1 (pronounced 'shelph').

This mutant is unable to complete its complex life cycle and is arrested in its development in the mosquito. The discovery could help in the design of new drugs to arrest the spread of this killer disease.

Targeting SHLP1

SHLP1 is critical to the cellular development of the malaria parasite. It can be found at every stage in the lifecycle of the malaria parasite and for the first time experts led by The University of Nottingham have analysed their biological function.

Dr Rita Tewari and her team in the Centre for Genetics and Genomics in the School of Biology have spent three years studying the phosphatase proteins that are important building blocks in the life cycle of the malaria parasite.

The findings of their latest study are published on 21st February 2013, in the journal Cell Reports.

Dr Tewari said: “SHLP1 is absent in humans and can be explored as an excellent target for malaria transmission control. Prevention of malaria transmission to and from the mosquito is vital in order to stop the devastating spread of malaria. Targeting SHLP1 could be an important step to achieve this goal.”

Although great strides have been made in reducing the number of deaths from malaria, half the world’s population remains at risk from the disease.

In 2010, 90 per cent of all malaria deaths occurred in Africa — mostly among children under the age of five.

Reducing the spread of malaria

Dr Tewari’s latest research has focused on the ancient bacterial Shewanella-like protein phosphatase (SHLP1) which is found only in bacteria, fungi, protists (organisms which paved the way for the evolution of early plants, animals and fungi) and plants.

The researchers, funded by the MRC and the Wellcome Trust, have discovered how SHLP1 controls development of the parasite at an essential stage of its life cycle. The parasite must move between human and mosquito in its quest to spread the disease.

It does this every time the mosquito bites. Removing this enzyme causes defects in structures vital for invading the mosquito gut — effectively stopping the mosquito from passing the disease on to another victim.

The research brought together expertise from Imperial College London, University of Oxford, the MRC National Institute for Medical Research and the University of Edinburgh.

Research continues

The work of Dr Tewari and her team is becoming increasingly important in the urgent effort to stop an infectious disease which kills 1.2 million people every year.

In 2009 Dr Tewari received an MRC New Investigator Award of nearly £500,000 to study the role of protein phosphatases during development in malaria parasite biology. She is currently a co-investigator on an MRC programme grant of £290,000 for her work on drug targets for malaria.

Dr Tewari has just received a further grant of nearly £600,000 from the MRC to study the regulation of cell division in the malaria parasite.

For up to the minute media alerts, follow us on Twitter or find out more on our Press Office blog

Notes to editors: The University of Nottinghamhas 42,000 students at award-winning campuses in the United Kingdom, China and Malaysia. It was ‘one of the first to embrace a truly international approach to higher education’, according to the Sunday Times University Guide 2013. It is also one of the most popular universities among graduate employers, one of the world’s greenest universities, and winner of the Times Higher Education Award for ‘Outstanding Contribution to Sustainable Development’. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong and the QS World Rankings.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise. The University aims to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health. The University won a Queen’s Anniversary Prize for Higher and Further Education for its research into global food security.

Lindsay Brooke - Media Relations Manager
Email: lindsay.brooke@nottingham.ac.uk
Phone: +44 (0)115 951 5751
ocation: University Park

Lindsay Brooke | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>