Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting malaria on the SHELPH

26.02.2013
Experts have disabled a unique member of the signalling proteins which are essential for the development of the malaria parasite.

They have produced a mutant lacking the ancient bacterial Shewanella-like protein phosphatase known as SHLP1 (pronounced 'shelph').

This mutant is unable to complete its complex life cycle and is arrested in its development in the mosquito. The discovery could help in the design of new drugs to arrest the spread of this killer disease.

Targeting SHLP1

SHLP1 is critical to the cellular development of the malaria parasite. It can be found at every stage in the lifecycle of the malaria parasite and for the first time experts led by The University of Nottingham have analysed their biological function.

Dr Rita Tewari and her team in the Centre for Genetics and Genomics in the School of Biology have spent three years studying the phosphatase proteins that are important building blocks in the life cycle of the malaria parasite.

The findings of their latest study are published on 21st February 2013, in the journal Cell Reports.

Dr Tewari said: “SHLP1 is absent in humans and can be explored as an excellent target for malaria transmission control. Prevention of malaria transmission to and from the mosquito is vital in order to stop the devastating spread of malaria. Targeting SHLP1 could be an important step to achieve this goal.”

Although great strides have been made in reducing the number of deaths from malaria, half the world’s population remains at risk from the disease.

In 2010, 90 per cent of all malaria deaths occurred in Africa — mostly among children under the age of five.

Reducing the spread of malaria

Dr Tewari’s latest research has focused on the ancient bacterial Shewanella-like protein phosphatase (SHLP1) which is found only in bacteria, fungi, protists (organisms which paved the way for the evolution of early plants, animals and fungi) and plants.

The researchers, funded by the MRC and the Wellcome Trust, have discovered how SHLP1 controls development of the parasite at an essential stage of its life cycle. The parasite must move between human and mosquito in its quest to spread the disease.

It does this every time the mosquito bites. Removing this enzyme causes defects in structures vital for invading the mosquito gut — effectively stopping the mosquito from passing the disease on to another victim.

The research brought together expertise from Imperial College London, University of Oxford, the MRC National Institute for Medical Research and the University of Edinburgh.

Research continues

The work of Dr Tewari and her team is becoming increasingly important in the urgent effort to stop an infectious disease which kills 1.2 million people every year.

In 2009 Dr Tewari received an MRC New Investigator Award of nearly £500,000 to study the role of protein phosphatases during development in malaria parasite biology. She is currently a co-investigator on an MRC programme grant of £290,000 for her work on drug targets for malaria.

Dr Tewari has just received a further grant of nearly £600,000 from the MRC to study the regulation of cell division in the malaria parasite.

For up to the minute media alerts, follow us on Twitter or find out more on our Press Office blog

Notes to editors: The University of Nottinghamhas 42,000 students at award-winning campuses in the United Kingdom, China and Malaysia. It was ‘one of the first to embrace a truly international approach to higher education’, according to the Sunday Times University Guide 2013. It is also one of the most popular universities among graduate employers, one of the world’s greenest universities, and winner of the Times Higher Education Award for ‘Outstanding Contribution to Sustainable Development’. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong and the QS World Rankings.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise. The University aims to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health. The University won a Queen’s Anniversary Prize for Higher and Further Education for its research into global food security.

Lindsay Brooke - Media Relations Manager
Email: lindsay.brooke@nottingham.ac.uk
Phone: +44 (0)115 951 5751
ocation: University Park

Lindsay Brooke | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>