Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purple corn compound may aid in developing future treatments for Type 2 diabetes, kidney disease

19.09.2012
Compound Found In Purple Corn May Help to Develop Therapies Aimed at Type 2 Diabetes and Kidney Disease

Article published in the American Journal of Physiology – Renal Physiology

Diabetic nephropathy is one of the most serious complications related to diabetes, often leading to end-stage kidney disease. Purple corn grown in Peru and Chile is a relative of blue corn, which is readily available in the U.S. The maize is rich in anthocyanins (also known as flavonoids), which are reported to have anti-diabetic properties.

Scientists from the Department of Food and Nutrition and Department of Biochemistry at Hallym University in Korea investigated the cellular and molecular activity of purple corn anthocyanins (PCA) to determine whether and how it affects the development of diabetic nephropathy (DN). Their findings suggest that PCA inhibits multiple pathways involved in the development of DN, which may help in developing therapies aimed at type 2 diabetes and kidney disease.

The study is entitled “Purple corn anthocyanins inhibit diabetes-associated glomerular monocyte activation and macrophage infiltration” http://bit.ly/SlrkRY.
It appears in the online edition of the American Journal of Physiology – Renal Physiology, published by the American Physiological Society (APS; www.the-aps.org).

Methodology

Researcher Min-Kyung Kang and colleagues performed a two-part study, an in vitro experiment investigating the effects of PCA on human endothelial cells cultured under hyperglycemic kidney conditions and an in vivo study that investigated the effects of PCA on kidney tissue in diabetic mice. In the in vitro experiment, cultured cells were exposed to 1-20 µg/ml of PCA for six hours (control cells were not exposed), then assessed for level of monocyte-endothelial cell adhesion, a major factor in the development of diabetic glomerulosclerosis. In the in vivo experiment, diabetic and control mice were dosed with PCA for eight weeks, then changes in kidney tissue were assessed and immunohistological analyses were performed. Kidney tissue was further analyzed for levels of inflammatory chemokines, which are key components in DN.

Results
Researchers found that in human endothelial cells cultured in hyperglycemic kidney conditions, induction of endothelial cell adhesion molecules decreased in a dose-dependent manner with PCA exposure, meaning that the PCA likely interfered with cell-cell adhesion in glomeruli. PCA also appeared to interfere with leukocyte recruitment and adhesion to glomerular endothelial cells. In diabetic mice, PCA exposure slowed mesangial expansion and interrupted the cellular signaling pathway that may instigate glomerular adhesion and infiltration of inflammatory cells responsible for diabetic glomerulosclerosis. Finally, PCA inhibited levels of macrophage inflammatory protein-2 and monocyte chemotactic protein-1 in kidney tissue, demonstrating that it may inhibit macrophage infiltration, which is closely related to renal inflammation.

Importance of the Findings
The research suggests that anthocyanins may be the main biofunctional compound in purple corn and could protect against mesangial activation of monocytes and infiltration of macrophages in glomeruli—the two major contributors to DN. The research further suggests that renoprotection by PCA against mesangial activation may be specific therapies targeting diabetes-associated diabetic glomerulosclerosis and renal inflammation. Finally, PCA supplementation may be an important strategy in preventing renal vascular disease in type 2 diabetes.

“PCA may be a potential renoprotective agent treating diabetes-associated glomerulosclerosis,” wrote the researchers.

Research Team

In addition to Min-Kyung Kang, the study team included Jing Li, Ju-Hyun Gong, Su-Nam Kwak, Jung Han Yoon Park, Soon Sung Lim and Young-Hee Kang, all also of the Department of Food and Nutrition at Hallym University in Korea, and Jae-Yong Lee, of the Department of Biochemistry at Hallym University.

Funding

This study was funded by a grant from the Ministry of Food, Agriculture, Forestry and Fisheries through Korea Institute of Planning and Evaluation for Technology of Food, Agriculture, Forestry and Fisheries; and by the National Research Foundation of Korea.

NOTE TO EDITORS: The article is available online at http://bit.ly/SlrkRY
For additional information, or to schedule an interview with a member of the research team, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301.634.7209.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS; www.the-APS.org/press) has been an integral part of the discovery process for 125 years.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>