Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsed electrical fields destroy antibiotic-resistant bacteria infecting burn injuries

22.05.2014

MGH researchers test novel approach to disinfecting wounds in animal study

Application of a technology currently used to disinfect food products may help to get around one of the most challenging problems in medicine today, the proliferation of bacteria resistant to antibiotics and other antimicrobial drugs.

In a paper appearing in the June issue of the journal Technology and already released online, investigators from the Massachusetts General Hospital (MGH) Center for Engineering in Medicine describe how the use of microsecond-pulsed, high-voltage non-thermal electric fields successfully killed resistant bacteria infecting experimentally induced burns in mice, reducing bacterial levels up to 10,000-fold.

"Pulsed electrical field technology has the advantages of targeting numerous bacterial species and penetrating the full thickness of a wound," says Alexander Golberg, PhD, of the MGH Center for Engineering in Medicine (MGH-CEM), first author of the paper. "This could lead to a completely new means of burn wound disinfection without using antibiotics, which can increase bacterial resistance."

... more about:
»MGH »antibiotics »bacteria »infections »injuries »skin »species

About 500,000 individuals are treated for burn injuries in the U.S. each year. Standard burn treatment involves removal of burned tissue, skin grafts, and the application of antiseptic and antimicrobial dressings to prevent and treat infection. The growing prevalence of antibiotic-resistant bacteria – including strains of Acinetobacter baumannii and Staphylococcus aureus – is behind the frequent failure of antibiotic treatment, necessitating novel approaches to eliminate infecting pathogens.

Pulsed electrical fields (PEFs) have been used for decades to preserve food by destroying bacteria, presumably by causing the formation of large pores in the bacterial membrane; and more recently PEF's have been used to treat solid tumors. Members of the MGH research team, led by Martin Yarmush, MD, PhD, director of the MGH-CEM, have previously used PEF to study scarless skin regeneration and are currently investigating use of the technology to improve wound healing. Theorizing that the procedure could improve management of wound infection, the researchers designed the current study.

The investigators applied a multidrug resistant strain of A. baumannii to small third-degree burns that had been made on the backs of anesthetized mice. After 40 minutes, during which imaging of the fluorescent bacteria confirmed the established infection, the burned area was treated with an electrical field generated by placing the damaged skin between two electrodes. Each animal received two 40-pulse treatments five minutes apart, one group receiving 250 V/mm pulses and another receiving 500 V/mm pulses.

Images taken right after each treatment showed pronounced drops in bacterial levels. While images taken three hours later showed some bacterial regrowth, the overall results confirmed a persistent reduction in bacterial levels, ranging from a 500-fold reduction after 80 pulses at 250 V/mm volts to a more than 10,000-fold reduction after 80 pulses at 500 V/mm. The researchers also found that increasing the number of pulses per treatment had a greater effect on bacterial reduction than did increasing the strength of the electric field. Additional investigation is needed to confirm the safety of the tested voltage levels and the treatment's effectiveness against deep infections and other species of resistant bacteria.

"Currently available technologies have not been able to solve the problem of multidrug-resistant burn wound infections, and lasers are unable to treat infections deep within a wound because of the scattering and absorption of light," says Yarmush, who is senior author of the Technology paper. "Pulsed electric fields are a previously unexplored technique that has the potential to provide a chemical-free way of disinfecting burns and other wound infections."

###

Golberg is a research fellow in the MGH Department of Surgery, and Yarmush is a faculty member in MGH Surgery and in the Harvard-MIT Division of Health Science. Golberg previously presented this work at the 46th American Burn Association conference in March, where it received the 2014 Robert B. Lindberg Award for the best scientific paper by a nonphysician.

Additional co-authors of the Technology paper are Felix Broelsch, MD, Saiqa Khan, MD, and William Austen, Jr., MD, MGH Division of Plastic and Reconstructive Surgery; Daniela Vecchio, PhD, and Michael Hamblin, PhD, Wellman Center for Photomedicine at MGH; and Robert Sheridan, MD, Sumner Redstone Burn Center at MGH. The study was supported by the MGH Fund for Medical Discovery and Shriners Hospitals for Children grant 85120-BOS.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $785 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | Eurek Alert!

Further reports about: MGH antibiotics bacteria infections injuries skin species

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>