Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsed electrical fields destroy antibiotic-resistant bacteria infecting burn injuries

22.05.2014

MGH researchers test novel approach to disinfecting wounds in animal study

Application of a technology currently used to disinfect food products may help to get around one of the most challenging problems in medicine today, the proliferation of bacteria resistant to antibiotics and other antimicrobial drugs.

In a paper appearing in the June issue of the journal Technology and already released online, investigators from the Massachusetts General Hospital (MGH) Center for Engineering in Medicine describe how the use of microsecond-pulsed, high-voltage non-thermal electric fields successfully killed resistant bacteria infecting experimentally induced burns in mice, reducing bacterial levels up to 10,000-fold.

"Pulsed electrical field technology has the advantages of targeting numerous bacterial species and penetrating the full thickness of a wound," says Alexander Golberg, PhD, of the MGH Center for Engineering in Medicine (MGH-CEM), first author of the paper. "This could lead to a completely new means of burn wound disinfection without using antibiotics, which can increase bacterial resistance."

... more about:
»MGH »antibiotics »bacteria »infections »injuries »skin »species

About 500,000 individuals are treated for burn injuries in the U.S. each year. Standard burn treatment involves removal of burned tissue, skin grafts, and the application of antiseptic and antimicrobial dressings to prevent and treat infection. The growing prevalence of antibiotic-resistant bacteria – including strains of Acinetobacter baumannii and Staphylococcus aureus – is behind the frequent failure of antibiotic treatment, necessitating novel approaches to eliminate infecting pathogens.

Pulsed electrical fields (PEFs) have been used for decades to preserve food by destroying bacteria, presumably by causing the formation of large pores in the bacterial membrane; and more recently PEF's have been used to treat solid tumors. Members of the MGH research team, led by Martin Yarmush, MD, PhD, director of the MGH-CEM, have previously used PEF to study scarless skin regeneration and are currently investigating use of the technology to improve wound healing. Theorizing that the procedure could improve management of wound infection, the researchers designed the current study.

The investigators applied a multidrug resistant strain of A. baumannii to small third-degree burns that had been made on the backs of anesthetized mice. After 40 minutes, during which imaging of the fluorescent bacteria confirmed the established infection, the burned area was treated with an electrical field generated by placing the damaged skin between two electrodes. Each animal received two 40-pulse treatments five minutes apart, one group receiving 250 V/mm pulses and another receiving 500 V/mm pulses.

Images taken right after each treatment showed pronounced drops in bacterial levels. While images taken three hours later showed some bacterial regrowth, the overall results confirmed a persistent reduction in bacterial levels, ranging from a 500-fold reduction after 80 pulses at 250 V/mm volts to a more than 10,000-fold reduction after 80 pulses at 500 V/mm. The researchers also found that increasing the number of pulses per treatment had a greater effect on bacterial reduction than did increasing the strength of the electric field. Additional investigation is needed to confirm the safety of the tested voltage levels and the treatment's effectiveness against deep infections and other species of resistant bacteria.

"Currently available technologies have not been able to solve the problem of multidrug-resistant burn wound infections, and lasers are unable to treat infections deep within a wound because of the scattering and absorption of light," says Yarmush, who is senior author of the Technology paper. "Pulsed electric fields are a previously unexplored technique that has the potential to provide a chemical-free way of disinfecting burns and other wound infections."

###

Golberg is a research fellow in the MGH Department of Surgery, and Yarmush is a faculty member in MGH Surgery and in the Harvard-MIT Division of Health Science. Golberg previously presented this work at the 46th American Burn Association conference in March, where it received the 2014 Robert B. Lindberg Award for the best scientific paper by a nonphysician.

Additional co-authors of the Technology paper are Felix Broelsch, MD, Saiqa Khan, MD, and William Austen, Jr., MD, MGH Division of Plastic and Reconstructive Surgery; Daniela Vecchio, PhD, and Michael Hamblin, PhD, Wellman Center for Photomedicine at MGH; and Robert Sheridan, MD, Sumner Redstone Burn Center at MGH. The study was supported by the MGH Fund for Medical Discovery and Shriners Hospitals for Children grant 85120-BOS.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $785 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | Eurek Alert!

Further reports about: MGH antibiotics bacteria infections injuries skin species

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>