Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsed electrical fields destroy antibiotic-resistant bacteria infecting burn injuries

22.05.2014

MGH researchers test novel approach to disinfecting wounds in animal study

Application of a technology currently used to disinfect food products may help to get around one of the most challenging problems in medicine today, the proliferation of bacteria resistant to antibiotics and other antimicrobial drugs.

In a paper appearing in the June issue of the journal Technology and already released online, investigators from the Massachusetts General Hospital (MGH) Center for Engineering in Medicine describe how the use of microsecond-pulsed, high-voltage non-thermal electric fields successfully killed resistant bacteria infecting experimentally induced burns in mice, reducing bacterial levels up to 10,000-fold.

"Pulsed electrical field technology has the advantages of targeting numerous bacterial species and penetrating the full thickness of a wound," says Alexander Golberg, PhD, of the MGH Center for Engineering in Medicine (MGH-CEM), first author of the paper. "This could lead to a completely new means of burn wound disinfection without using antibiotics, which can increase bacterial resistance."

... more about:
»MGH »antibiotics »bacteria »infections »injuries »skin »species

About 500,000 individuals are treated for burn injuries in the U.S. each year. Standard burn treatment involves removal of burned tissue, skin grafts, and the application of antiseptic and antimicrobial dressings to prevent and treat infection. The growing prevalence of antibiotic-resistant bacteria – including strains of Acinetobacter baumannii and Staphylococcus aureus – is behind the frequent failure of antibiotic treatment, necessitating novel approaches to eliminate infecting pathogens.

Pulsed electrical fields (PEFs) have been used for decades to preserve food by destroying bacteria, presumably by causing the formation of large pores in the bacterial membrane; and more recently PEF's have been used to treat solid tumors. Members of the MGH research team, led by Martin Yarmush, MD, PhD, director of the MGH-CEM, have previously used PEF to study scarless skin regeneration and are currently investigating use of the technology to improve wound healing. Theorizing that the procedure could improve management of wound infection, the researchers designed the current study.

The investigators applied a multidrug resistant strain of A. baumannii to small third-degree burns that had been made on the backs of anesthetized mice. After 40 minutes, during which imaging of the fluorescent bacteria confirmed the established infection, the burned area was treated with an electrical field generated by placing the damaged skin between two electrodes. Each animal received two 40-pulse treatments five minutes apart, one group receiving 250 V/mm pulses and another receiving 500 V/mm pulses.

Images taken right after each treatment showed pronounced drops in bacterial levels. While images taken three hours later showed some bacterial regrowth, the overall results confirmed a persistent reduction in bacterial levels, ranging from a 500-fold reduction after 80 pulses at 250 V/mm volts to a more than 10,000-fold reduction after 80 pulses at 500 V/mm. The researchers also found that increasing the number of pulses per treatment had a greater effect on bacterial reduction than did increasing the strength of the electric field. Additional investigation is needed to confirm the safety of the tested voltage levels and the treatment's effectiveness against deep infections and other species of resistant bacteria.

"Currently available technologies have not been able to solve the problem of multidrug-resistant burn wound infections, and lasers are unable to treat infections deep within a wound because of the scattering and absorption of light," says Yarmush, who is senior author of the Technology paper. "Pulsed electric fields are a previously unexplored technique that has the potential to provide a chemical-free way of disinfecting burns and other wound infections."

###

Golberg is a research fellow in the MGH Department of Surgery, and Yarmush is a faculty member in MGH Surgery and in the Harvard-MIT Division of Health Science. Golberg previously presented this work at the 46th American Burn Association conference in March, where it received the 2014 Robert B. Lindberg Award for the best scientific paper by a nonphysician.

Additional co-authors of the Technology paper are Felix Broelsch, MD, Saiqa Khan, MD, and William Austen, Jr., MD, MGH Division of Plastic and Reconstructive Surgery; Daniela Vecchio, PhD, and Michael Hamblin, PhD, Wellman Center for Photomedicine at MGH; and Robert Sheridan, MD, Sumner Redstone Burn Center at MGH. The study was supported by the MGH Fund for Medical Discovery and Shriners Hospitals for Children grant 85120-BOS.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $785 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | Eurek Alert!

Further reports about: MGH antibiotics bacteria infections injuries skin species

More articles from Health and Medicine:

nachricht Exploring a new frontier of cyber-physical systems: The human body
18.05.2015 | National Science Foundation

nachricht Soft-tissue engineering for hard-working cartilage
18.05.2015 | Technische Universitaet Muenchen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>