Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulmonary hypertension in children may result from reduced activity of gene regulator

09.03.2009
Too little activity by gene regulators called PPARs appears to be a major player in the irreversible lung damage that can occur in children with heart defects, researchers say.

If they are right, drugs already under study to boost PPAR signaling in adults with lung injuries, may help these infants restore a healthy balance of blood vessel dilation and contraction, preventing the remodeling that transforms flexible blood vessels into rigid pipes and the pulmonary hypertension that often results.

"These drugs might be another therapy where you can treat some of the underlying mechanisms that have become deranged and reset the clock; essentially you can help the body go back to normal," said Dr. Stephen Black, a cell and molecular physiologist at the Medical College of Georgia's Vascular Biology Center.

About 1 percent of children are born with a heart defect with half requiring surgery. Improved surgical and medical treatments have improved survival rates for these children. Still their risk of related lung disease also can be deadly, researchers say as the high blood flow these defects produce pummels the lungs, turning flexible pulmonary blood vessels into rigid pipes, said Dr. Black, who co-directs the Cardiovascular Discovery Institute in the MCG School of Medicine.

Dr. Black and his colleague, Dr. Jeffrey Fineman, a whole-animal physiologist and physician at the University of California, San Francisco, want to understand the molecular mechanisms that disrupt regulatory mechanisms of the inner lining of blood vessels, or endothelium, and put children at increased risk. Dr. Black is principal investigator on two new National Institutes of Health grants and co-investigator on a third with Dr. Fineman to help dissect the dysregulation.

In a surgically created animal model of a congenital heart defect that causes too much pulmonary blood flow, they have already shown PPARs – peroxisome proliferator-activated receptors – are down regulated. In these lambs, whose four-chambered hearts are essentially identical to humans, agonists to boost PPAR activity prevent the usual endothelial dysfunction that occurs in the first few weeks after birth. Conversely, PPAR antagonists cause endothelial dysfunction without the underlying heart defect.

At its core, endothelial dysfunction is decreased ability of blood vessels to dilate and increased ability to thicken. That's just what MCG and UCSF researchers have seen in their animal model: increased expression of genes that cause blood vessels to constrict and reduced expression of those that enable dilation. They also are learning that the imbalance results from synergistic factors.

There's increased presence of reactive oxygen species which scavenge nitric oxide, a powerful dilator. There's also more asymmetric dimethyl arginine, or ADMA, which inhibits nitric oxide production, making bad matters worse. Nitric oxide synthase uses arginine to make nitric oxide and ADMA, an arginine analogue, can bind to the nitric oxide precursor so it instead becomes a source for free radical generation. Genes that regulate transfer of carnitine, an amino acid that regulates energy metabolism in the cell, also are out of whack so the cell's energy plants, or mitochondria, don't produce adequate energy but do start producing free radicals. Interestingly, the researchers have evidence that the carnitine genes are regulated by PPAR. And, they have documented an early increase in ADMA in their animal model and are studying its impact on cell signaling.

The way it's supposed to work is all about balance: the same amount of blood that comes into the heart being pumped to the lungs to pick up oxygen then going back to the heart to be pumped to the body. In their animal model, and in some children with heart defects, three times more blood goes back to the lungs than to the body. The shear force this exerts on the blood vessel lining sets in motion the resulting imbalance of contraction, dilation and more.

When a heart defect is the cause, pulmonary hypertension develops the first few weeks after birth, when previously idle lungs start getting hammered with excessive blood volume. In one of the worst case scenarios, pulmonary hypertension can preclude surgery to repair the heart defect that's causing the problem.

Other babies don't have heart defects but still are in deep and immediate trouble at birth. One reason is meconium aspiration, when stool in the amniotic fluid gets inside a baby's lungs before birth so lungs can't function properly afterward.

Dr. Black suspects that underlying mechanisms that cause endothelial dysfunction and pulmonary hypertension in both scenarios have PPAR in common.

If all continues to go well, the researchers hope to begin clinical trials of PPAR agonists in 2010.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>