Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prove of the maternal influence for the development of Alzheimer’s disease

26.04.2012
Neurodegenerative disorders with dementia play an increasing role in the aging western population, esp. for the care and health systems. In 2050, an estimated number of 106-360 million demented patients have to be taken care of.

Alzheimer’s disease comprises 2/3 of all dementia cases. It is an age-related disease that starts to effect patients in their 60ies and older. Only less than 1% are hereditary cases where specific mutations are known.

Till now, age is the most important risk factor for sporadic Alzheimer’s disease with the risk being even more elevated if the mother or the grandmother were sufferers.

The research team led by Jens Pahnke (M.D., Ph.D., E.F.N.) from the University of Magdeburg (Germany) discovered an important link between maternal inheritance and the deposition of toxic amyloid in Alzheimer’s disease. They established new mouse models that mimic the maternal inheritance of mitochondria. In an international collaboration with colleagues from the USA, Canada, France and Germany they discovered that increased activity of mitochondria leads to a reduced deposition rate of the toxic Alzheimer peptides.
In mice with the highest mitochondrial activity they discovered an approximately 80% reduction of amyloid as compared to mice with mitochondria that exhibited much lower activity. In October 2011, they discovered a new Alzheimer’s gene that also directly depends on the cellular energy produced by the mitochondria. Now they link these new findings to explain age related changes, maternal inheritance and impairment of toxic amyloid export from the brain.

Interestingly, the mental capacity of the brain is directly linked to the availability of energy as produced by mitochondria. It has long been discussed why high education and rate of disease are inversely correlated. The different activities of mitochondria may provide a tool to explain the latter fact.

Artikel/article online 0:23, 21.Apr.2012 in Acta Neuropathologica
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/
s00401-012-0980-x

Contact information:
Jens Pahnke, Universität Magdeburg, Neurodegeneration Research Lab (NRL), Leipziger Str 44, 39120 Magdeburg, Germany, Tel: +49 391 67 24514, Email: jens.pahnke@gmail.com

Kornelia Suske | idw
Further information:
http://www.NRL.ovgu.de

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>