Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prototype, 7-foot-tall sanitizer automates disinfection of hard-to-clean hospital equipment

04.08.2009
- SUDS machine designed to reduce infections and cut back on expensive “disposables”

Hopkins experts in applied physics, computer engineering, infectious diseases, emergency medicine, microbiology, pathology and surgery have unveiled a 7-foot-tall, $10,000 shower-cubicle-shaped device that automatically sanitizes in 30 minutes all sorts of hard-to-clean equipment in the highly trafficked hospital emergency department.

The novel device can sanitize and disinfect equipment of all shapes and sizes, from intravenous line poles and blood pressure cuffs, to pulse oximeter wires and electrocardiogram (EKG) wires, to computer keyboards and cellphones.

The invention, nicknamed “SUDS” for self-cleaning unit for the decontamination of small instruments, has already been shown to initially disinfect noncritical equipment better than manual cleaning, they report in the Annals of Surgical Innovation and Research online July 30.

Study senior author and surgeon Bolanle Asiyanbola, M.D., says the four-year SUDS project was initially sparked by the rapid rise in use of expensive disposable items, a trend linked to efforts to prevent bacterial infections among and between patients in hospitals.

Drawing on her experience in the operating room, where many batches of surgical clamps, retractors and scalpels have been sterilized, decontaminated and safely re-used for decades, Asiyanbola put together a team to end what she calls the “wasteful and unnecessary” practice of wiping down a lot of heavily used items with disinfectants and applying a lot of elbow grease. “If we can safely re-use equipment in the operating room, then we can do it elsewhere in the hospital for non-critical equipment,” she says.

In the study, the Johns Hopkins team showed that SUDS was able to disinfect some 90 pieces of used emergency-room equipment, placing as many as 15 items in the device and “fogging” the equipment with an aerosolized, commercially available disinfectant chemical, or biocide, called Sporicidin. None of the electronic circuitry appeared to be damaged by the decontamination process. Instruments tested were of the type that comes in direct contact with a patient’s skin, the body’s key barrier to infection.

Repeated swabbing and lab culture testing of each decontaminated instrument showed that all items remained free of so-called gram-positive bacteria for two full days after cleaning, even after the equipment was returned to the emergency department and re-used. On the bacteria-free list were such potentially dangerous superbugs as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE).

By contrast, testing of an equal number of similar items that were manually scrubbed down with a disinfectant solution, called Airex, showed that 25 percent of the devices had bacterial growth after two days, including growth of potentially dangerous gram-positive bacteria, such as MRSA and VRE, as well as gram-negative type bacteria, most notably, Pseudomonas aeruginosa, and Acinetobacter baumannii, plus some types of fungi.

“Our study results with the prototype offer strong evidence that more can be done to disinfect noncritical equipment through automated decontamination processes in heavily trafficked areas of the hospital,” says Asiyanbola, an assistant professor at the Johns Hopkins University School of Medicine. “We believe this SUDS device has the potential to further protect our patients and staff from hospital infections and save health care dollars by making it possible to clean and re-use more kinds of hospital equipment.”

The Hopkins inventors, who have patent applications pending, say more studies must be done to determine if SUDS is effective for other hospital superbugs, notably, Clostridium difficile.

Asiyanbola worked closely with Karen Carroll, M.D., director of microbiology and a professor of pathology and medicine, and Allison Agwu, M.D., an assistant professor, both at Johns Hopkins, to assemble the necessary team to help test the prototype. Funding was provided by a grant from the Department of Surgery at The Johns Hopkins Hospital.

Besides Asiyanbola, Carroll and Agwu, other Johns Hopkins University researchers involved in this study were C. Obasi, M.D., Richard Rothman, M.D., and T. Ross, M.T., at the School of Medicine; W. Akinpelu, M.Sc., and R. Hammons, Ph.D., at the University’s Applied Physics Laboratory; C. Clarke, Ph.D., and R. Etienne-Cummings, Ph.D., at the University’s Whiting School of Engineering; P. Hill, M.D., and S. Babola, Ph.D., at the University’s Bloomberg School of Public Health.

For additional information, go to:
http://www.hopkinsbayview.org/surgery/faculty/bola.html
http://www.hopkinsmedicine.org/microbiology/faculty/carroll.html
http://www.asir-journal.com/content/3/1/8

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>