Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteomics and precision medicine

08.02.2016

U. Iowa team shows how protein analysis can make diagnoses more accurate and treatments better targeted to individual patients

As medical professionals search for new ways to personalize diagnosis and treatment of disease, a research team at the University of Iowa has already put into practice what may be the next big step in precision medicine: personalized proteomics.


This retinal scan of a uveitis patient demonstrates retinal thickening (red) involving the central retina resulting in compromising vision. University of Iowa researchers recently recently used proteomics (protein profiling) to devise a successful treatment strategy for a patient with uveitis, a disease which can have many causes, making it particularly difficult to diagnose and treat effectively.

Credit: Vinit Mahajan, University of Iowa Health Care

Proteomics is the large-scale analysis of all the proteins in a cell type, tissue type, or organism. In contrast to genomics, which shows how genetic differences can indicate a person's potential for developing a disease over a lifetime, proteomics takes a real-time snapshot of a patient's protein profile during the disease. Doctors can use this information to tailor diagnosis and initiate treatment, sometimes long before a conventional diagnosis even begins to home in on a cause.

"Proteomics allows us to create a precision molecular diagnosis that's totally personalized for the patient," says Vinit Mahajan, M.D., Ph.D., UI clinical assistant professor of ophthalmology and visual sciences.

Mahajan's lab recently used proteomics to devise a successful treatment strategy for a patient with uveitis, a potentially blinding eye disease that can have many causes, making it particularly difficult to diagnose and treat effectively. The team's findings are described in a paper published online Feb. 4 in the journal JAMA Ophthalmology.

The patient had been losing vision in one eye because of relapsing inflammation and swelling in the retina, with a buildup of scar tissue. The cause was unknown, so the treatment had consisted of a trial-and-error approach based on a clinical observation of the symptoms.

"Right now, there is no precision medicine for this kind of disease," Mahajan says.

Mahajan and his team then performed a proteomic analysis of fluid taken from the patient's eye and compared that protein profile to profiles of other patients' eye fluid. Gabriel Velez, a graduate student in Mahajan's lab, spotted a pattern that closely resembled those of two other patients who were known to have an autoimmune disorder that produces antibodies against the retina.

"Her symptoms didn't look exactly like the standard clinical diagnosis for that disease," says Nathaniel Roybal, M.D., Ph.D., a vitreoretinal surgical fellow working with Mahajan. "She was missing many features. But based on this pattern that we saw, we ordered a lab test to check if she makes anti-retinal antibodies. And sure enough, the test showed that she did. So we changed how we treated her."

Mahajan performed surgery and implanted a device that continuously releases a steroid into the eye. The patient's vision improved, and she no longer has relapses.

Alexander G. Bassuk, M.D., Ph.D., associate professor in the Stead Family Department of Pediatrics at University of Iowa Children's Hospital, who co-authored the paper, says the value of personal proteomics extends beyond uveitis.

"We are using this platform to address other kinds of eye and inflammatory diseases where the best diagnosis and therapies for individual patients remain inadequate," Bassuk says.

While proteomics is being studied elsewhere, primarily for diagnostics, Mahajan says the UI implementation is unique because it uses a "whole-patient" approach that coordinates the collection, transport, storage, coding, and analysis of samples in a way that can directly and efficiently improve patient care.

"We were able to combine surgery and science and intelligently go back to the patient to decide on the optimal therapy," Mahajan says. "This is personalized precision medicine. It's the next step."

###

The study was funded in part by grants from the National Institutes of Health, the Doris Duke Charitable Foundation, and Research to Prevent Blindness.

Media Contact

Jennifer Brown
jennifer-l-brown@uiowa.edu
319-335-3590

 @uihealthcare

http://www.uihealthcare.com/index.html 

Jennifer Brown | EurekAlert!

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>