Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein RAL associated with aggressive characteristics in prostate, bladder and skin cancers

18.05.2012
We have known for years that when the proteins RalA and RalB are present, cells in dishes copy toward aggressive forms of cancer. However, until this week, no study had explored the effects of RAL proteins in human cancers – an essential step on the path to developing drugs to target these proteins.

From metastasis in bladder cancer, to seminal vessel involvement in prostate cancer, to shortened survival in squamous cell carcinoma, a study published this week in the journal Cancer Research shows that proteins RalA and RalB are associated with aggressive cancer characteristics in human tumors.

"But here's the interesting part," says Dan Theodorescu, director of the University of Colorado Cancer Center and the paper's senior author – "it wasn't the presence of these proteins per se that predicted aggressive cancer characteristics, it was the signature of other genes changed by RAL activity in the cells that predicted poor outcomes."

RalA and RalB activity leads to a cascade of genetic (and gene expression) changes. Theodorescu and colleagues discovered the signature of these changes, and this pattern of turning up and turning down genes is what predicts aggressive cancers.

"It might not be presence of these RAL proteins themselves that drives cancer as much as their ability to drive genetic changes that in turn drive cancer," Theodorescu says.

In the three types of human tumors explored – bladder, prostate, and the skin cancer known as squamous cell carcinoma – panels of genes affected by RalA and RalB in turn predicted stage and survival.

"The RAL family of GTPases are cousins of the now well-known RAS family of oncogenes," Theodorescu explains. "These RAS family GTPases, are found in leukemias, lung cancer, colon cancer and others, and have been a focus of efforts to develop targeted cancer therapies. We imagine the related RAL family may provide a similar target."

Remove RalA and RalB from cancer cells and perhaps doctors can stop the genetic changes that cause aggressive cancer.

Support for the study was provided by National Institutes of Health and National Cancer Institute grant CA075115.

Erika Matich | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>