Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein RAL associated with aggressive characteristics in prostate, bladder and skin cancers

18.05.2012
We have known for years that when the proteins RalA and RalB are present, cells in dishes copy toward aggressive forms of cancer. However, until this week, no study had explored the effects of RAL proteins in human cancers – an essential step on the path to developing drugs to target these proteins.

From metastasis in bladder cancer, to seminal vessel involvement in prostate cancer, to shortened survival in squamous cell carcinoma, a study published this week in the journal Cancer Research shows that proteins RalA and RalB are associated with aggressive cancer characteristics in human tumors.

"But here's the interesting part," says Dan Theodorescu, director of the University of Colorado Cancer Center and the paper's senior author – "it wasn't the presence of these proteins per se that predicted aggressive cancer characteristics, it was the signature of other genes changed by RAL activity in the cells that predicted poor outcomes."

RalA and RalB activity leads to a cascade of genetic (and gene expression) changes. Theodorescu and colleagues discovered the signature of these changes, and this pattern of turning up and turning down genes is what predicts aggressive cancers.

"It might not be presence of these RAL proteins themselves that drives cancer as much as their ability to drive genetic changes that in turn drive cancer," Theodorescu says.

In the three types of human tumors explored – bladder, prostate, and the skin cancer known as squamous cell carcinoma – panels of genes affected by RalA and RalB in turn predicted stage and survival.

"The RAL family of GTPases are cousins of the now well-known RAS family of oncogenes," Theodorescu explains. "These RAS family GTPases, are found in leukemias, lung cancer, colon cancer and others, and have been a focus of efforts to develop targeted cancer therapies. We imagine the related RAL family may provide a similar target."

Remove RalA and RalB from cancer cells and perhaps doctors can stop the genetic changes that cause aggressive cancer.

Support for the study was provided by National Institutes of Health and National Cancer Institute grant CA075115.

Erika Matich | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>