Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein RAL associated with aggressive characteristics in prostate, bladder and skin cancers

18.05.2012
We have known for years that when the proteins RalA and RalB are present, cells in dishes copy toward aggressive forms of cancer. However, until this week, no study had explored the effects of RAL proteins in human cancers – an essential step on the path to developing drugs to target these proteins.

From metastasis in bladder cancer, to seminal vessel involvement in prostate cancer, to shortened survival in squamous cell carcinoma, a study published this week in the journal Cancer Research shows that proteins RalA and RalB are associated with aggressive cancer characteristics in human tumors.

"But here's the interesting part," says Dan Theodorescu, director of the University of Colorado Cancer Center and the paper's senior author – "it wasn't the presence of these proteins per se that predicted aggressive cancer characteristics, it was the signature of other genes changed by RAL activity in the cells that predicted poor outcomes."

RalA and RalB activity leads to a cascade of genetic (and gene expression) changes. Theodorescu and colleagues discovered the signature of these changes, and this pattern of turning up and turning down genes is what predicts aggressive cancers.

"It might not be presence of these RAL proteins themselves that drives cancer as much as their ability to drive genetic changes that in turn drive cancer," Theodorescu says.

In the three types of human tumors explored – bladder, prostate, and the skin cancer known as squamous cell carcinoma – panels of genes affected by RalA and RalB in turn predicted stage and survival.

"The RAL family of GTPases are cousins of the now well-known RAS family of oncogenes," Theodorescu explains. "These RAS family GTPases, are found in leukemias, lung cancer, colon cancer and others, and have been a focus of efforts to develop targeted cancer therapies. We imagine the related RAL family may provide a similar target."

Remove RalA and RalB from cancer cells and perhaps doctors can stop the genetic changes that cause aggressive cancer.

Support for the study was provided by National Institutes of Health and National Cancer Institute grant CA075115.

Erika Matich | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>