Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein is potential new treatment target for adult pulmonary hypertension

18.10.2011
A protein critical to development appears to have a grave impact on lungs exposed to smoking and air pollution, researchers report.

Blocking that protein, called calpain, in the lungs may prove an effective way to avoid narrow, scarred blood vessels and pulmonary hypertension, said Dr. Yunchao Su, pharmacologist at Georgia Health Sciences University.

"Calpain enables the bad behavior that occurs in pulmonary hypertension," said Su, corresponding author of the study published in the Journal of Clinical Investigation.

Pulmonary hypertension is an often progressive and deadly condition in which tiny blood vessels that permeate the lungs narrow, raising blood pressure and eventually enlarging the pumping chamber of the heart as it struggles to get blood inside the lungs.

Babies with heart defects can have it, but in adults it can result from chronic obstructive lung disease, or COPD, primarily caused by smoking (emphysema is the most common form of COPD) or air pollutants, including second-hand smoke. Inflamed and poorly oxygenated lungs start producing growth factors and other measures to constrict blood vessels in an effort to restore balance between blood flow and oxygen levels. This works in the short term, Su said, but a chronic stimulus such as smoking can make, ongoing constriction debilitating or deadly. Treatment improves symptoms such as shortness of breath, but the only cure is a heart-lung transplant.

Researchers found calpain gets activated by growth factors released by stressed lung tissue then multiplies the vascular remodeling by cleaving TGFbeta, another growth factor typically inactive in the lungs. Cleaving TGFbeta releases a strong, active form that increases cell proliferation and collagen production. A similar process helps heal a cut on the hand, but inside the blood vessel it's counterproductive, Su said.

Additionally, in animal models of pulmonary hypertension as well as lungs removed from patients getting a transplant, the researchers found elevated levels of calpain. When they blocked its action by giving an inhibitor or removing its gene, TGFbeta was not activated and vascular remodeling and scarring as well as the heart damage were prevented. "The pulmonary process was close to normal," Su said.

Next steps include seeing whether the calpain inhibitor can stop cell proliferation and collagen synthesis in lung cells removed during a biopsy. Toxicology studies also will be needed before looking toward clinical trials, Su said.

He noted that a calpain inhibitor is likely not feasible for children because of the protein's importance in development. He envisions an inhalable version of the inhibitor to minimize any side effects in adults.

Su's earlier studies helped define calpain's role in cell proliferation when he found that lung cells in culture healed just fine after being cut until he added the calpain inhibitor. The work was published in 2006 in the The FASEB Journal. Su suspected then that calpain also had a role in pulmonary hypertension.

Dr. Wanli Ma, former postdoctoral fellow in Dr. Su's lab, is first author. GHSU coauthors include Dr. Weihong Han, research associate, and Dr. Haroldo Toque, a postdoctoral research associate in Dr. William Caldwell's lab.

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>