Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein offers new clue to cause and treatment for kidney disease

13.12.2010
University of Alabama at Birmingham researchers have pinpointed a protein that compromises the kidney's filtering ability, causing nephrotic syndrome, and demonstrated that a naturally occurring precursor of an acid in the body offers potential for treating some forms of the condition.

The research was published online Dec. 12 in Nature Medicine.

"This is a major breakthrough in understanding the development and treatment of kidney disease associated with proteinuria, the leakage of protein in the urine," said the study's lead author Sumant Singh Chugh, M.D., associate professor of medicine in the UAB Division of Nephrology.

Nephrotic syndrome is characterized by the presence of excessive protein in the urine, low blood-protein levels, high cholesterol, high triglycerides and swelling. Common causes include diabetic nephropathy, minimal change disease, focal and segmental glomerulosclerosis and membranous nephropathy. It also can be caused by infections, certain drugs, cancer, genetic disorders, immune disorders or diseases that affect multiple body systems including lupus, multiple myeloma and amyloidosis.

Chugh said his research team, studying transgenic rats, discovered that in some forms of nephrotic syndrome, a protein called Angiopoietin-like 4 is over-produced in specialized cells called podocytes. Podocytes are found in the glomerular filter, which cleans the blood to produce urine. As a result of the over-production, the efficiency of this filter is compromised, resulting in the loss of blood proteins in the urine. When this dysfunction is severe, it causes nephrotic syndrome.

Chugh said the researchers also determined that the Angiopoietin-like 4 protein lacks the attachment of adequate amounts of sialic acid, a modified carbohydrate that affects the protein's adhesive properties. By feeding sialic acid precursor ManNAc to transgenic rats that over-produce Angiopoietin-like 4 in podocytes, the researchers were able to increase the amount of protein-bound sialic acid, and reduce the amount of protein leakage into the urine by more than 40 percent.

"These findings, at present, most directly relate to minimal change disease, a form of nephrotic syndrome commonly seen in children, but are also likely to be relevant to common causes of proteinuria and nephrotic syndrome in adults, including those with diabetes," Chugh said.

He added that this study is important because traditional forms of therapy, which include the use of glucocorticoids, for example prednisone, and other immunosuppressive drugs can have significant toxicity, especially after prolonged use or repeated cycles of treatment. However, sialic acid and ManNAc are naturally occurring substances in the body, and toxicity is likely to be limited. The investigators, he said, believe that relatively small doses of the sialic acid may be effective for nephrotic syndrome, since, unlike most other cells in the body, the target cell in the kidney does not divide under most conditions and is likely to accumulate these compounds even at low doses.

"The major known toxicity of sialic acid therapy observed by other investigators in a mouse model of the human muscle disease, hereditary inclusion body myopathy, was the development of ovarian cysts at very high doses," Chugh said. "These doses are approximately 20-fold higher than those used to reduce proteinuria in rats in the current study; knowing that, we believe sialic acid repletion has potential in the future treatment of Minimal Change Disease and some other forms of nephrotic syndrome."

About UAB

Known for its innovative and interdisciplinary approach to education at both the graduate and undergraduate levels, the University of Alabama at Birmingham (UAB) is the state of Alabama's largest employer and an internationally renowned research university and academic health center whose professional schools and specialty patient care programs are consistently ranked as among the nation's top 50; find more information at www.uab.edu and www.uabmedicine.org.

EDITOR'S NOTE: The University of Alabama at Birmingham (UAB) is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on all consecutive references.

VIDEO: www.youtube.com/uabnews TEXT: www.uab.edu/news TWEETS: www.twitter.com/uabnews

Jennifer Park Lollar | EurekAlert!
Further information:
http://www.uab.edu

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>