Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein could offer target to reduce lung damage from smoking-caused emphysema

17.05.2011
An international research team has identified a lung protein that appears to play a key role in smoking-related emphysema and have crafted an antibody to block its activity, Indiana University scientists reported.

The research, conducted in mice, suggests that the protein, a cytokine named EMAPII, could provide a target for drugs to treat emphysema, said Irina Petrache, M.D., associate professor of medicine at the Indiana University School of Medicine. The research was posted online May 16 for the June edition of The Journal of Clinical Investigation.

Emphysema, a form of chronic obstructive pulmonary disease (COPD) that affects nearly 5 million people in the U.S alone, is caused by the destruction of cells that transfer oxygen from the lungs to the blood, along with inflammation in the lungs. Cigarette smoking is the most common cause of emphysema.

The cytokine EMAPII – a type of cell-signaling molecule – is normally part of the process of early lung development. Research had previously found that EMAPII could cause the death of cells that line blood vessels – endothelial cells – and inflammation, but it had not been identified as the molecular culprit at work when cigarette smoking inflicted its damage on the lungs.

"The fact that we could have a single target affecting two major processes made us excited about looking for it in response to smoking," said Dr. Petrache, the Floyd and Reba Smith Investigator in Respiratory Disease at IU.

When the researchers induced emphysema in mice exposed to cigarette smoke, tests showed the mice had elevated levels of the EMAPII cytokine. In other tests, the scientists also found elevated levels of the cytokine in the lungs of patients with COPD.

The researchers also found that the cell death caused by the EMAPII resulted in the release of enzymes that cause more production of EMAPII, causing a vicious cycle of elevated cytokine levels and more cell death.

Members of the research team, led by first author Matthias Clauss, Ph.D., IU associate research professor of cellular and integrative physiology, created an antibody designed to specifically target EMAPII and block its activity. The mice received an inhaled version of the antibody during their third month of smoking. They then were exposed to a fourth month of smoking without the treatment.

The mice receiving the treatment had significantly less cell death and inflammation and improved lung function compared to the smoking mice who did not receive the treatment. Moreover the benefits to the treated mice continued even after the treatment stopped.

Next steps include optimizing the duration of the antibody treatments to determine whether they continue to have an effect after the animals have stopped smoking, she said. Plans also call for work to measure levels of the cytokine in large numbers of human emphysema and COPD patients to determine whether it can be used as a biomarker to measure the presence, severity or type of lung disease.

Considerable research work remains before an EMAPII antibody might be ready for testing in humans, Dr. Petrache said.

Additional researchers on the project included Robert Voswinckel and Sandeep Nikam of the Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Gangaraju Rajashekhar, Ninotchka L. Sigua, Natalia I. Rush, Kelly S. Schweitzer, Krzysztof Kamocki, Amanda J. Fisher, Yuan Gu, Bilal Safadi, Homer L. Twigg III and Robert G. Presson of the IU School of Medicine; Heinz Fehrenbach of the Leibniz Center for Medicine and Biosciences, Borstel, Germany; Ali Ö. Yildirim of the German Research Center for Environmental Health, Helmholtz Zentrum, Munich, Germany; Walter C. Hubbard of the Johns Hopkins University, Baltimore; Rubin M. Tuder of the University of Colorado Health Science Center, Denver; and Sanjay Sethi of New York University School of Medicine.

Funding for the research was provided by the National Institutes of Health, Deutsche Forschungsgemeinschaft, the German Clusters of Excellence initiative and the European Commission.

Eric Schoch | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>