Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein in 'good cholesterol' may be a key to treating pulmonary hypertension

28.08.2014

Oxidized lipids are known to play a key role in inflaming blood vessels and hardening arteries, which causes diseases like atherosclerosis.

A new study at UCLA demonstrates that they may also contribute to pulmonary hypertension, a serious lung disease that narrows the small blood vessels in the lungs.


This images shows the differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent (left) treated with the HDL peptide. Note the very narrowed lung artery, and thick walls and larger chamber of the right heart in the diseased animal and improvements with 4F peptide treatment.

Credit: UCLA


This image shows the differences in the structure of a small lung artery (top row) and heart (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent (right) treated with the molecule microRNA193. Note the very narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with microRNA-193 treatment.

Credit: UCLA

Using a rodent model, the researchers showed that a peptide mimicking part of the main protein in high-density lipoprotein (HDL), the so-called "good" cholesterol, may help reduce the production of oxidized lipids in pulmonary hypertension. They also found that reducing the amount of oxidized lipids improved the rodents' heart and lung function.

The study appears in the current online edition of the peer-reviewed journal Circulation.

A rare progressive condition, pulmonary hypertension can affect people of all ages. The disease makes it harder for the heart to pump blood through these vital organs, which can lead to heart failure.

"Our research helps unravel the mechanisms involved in the development of pulmonary hypertension," said Dr. Mansoureh Eghbali, the study's senior author and an associate professor of anesthesiology at the David Geffen School of Medicine at UCLA. "A key peptide related to HDL cholesterol that can help reduce these oxidized lipids may provide a new target for treatment development."

Lipids such as fatty acids become oxidized when they are exposed to free radicals — tiny particles that are produced when the body converts food into energy -- or when they are exposed to pollution, and in numerous other ways.

Although researchers have known that oxidized lipids played a role in the development of atherosclerosis and other vascular diseases, the UCLA team discovered higher-than-normal levels of oxidized proteins in rodents with pulmonary hypertension.

The UCLA researchers also knew that apoA-1, a protein that is a key component of HDL cholesterol, can reduce oxidized lipids, so they used a small peptide called 4F that mimics the action of apoA-1 and found that the 4F not only decreased the levels of oxidized lipids in the rodents, but also improved their heart and lung function. Specifically, the peptide restored the altered expression of a key molecule called micro ribonucleic acid (microRNA-193), which targets the action of essential enzymes involved in the production of oxidized lipids.

"The increased amounts of these oxidized lipids due to pulmonary hypertension keeps the expression of this molecule under check, which aggravates symptoms of the disease," said first author Dr. Salil Sharma, a UCLA postdoctoral researcher in anesthesiology.

By restoring the expression of microRNA-193 to its full potential, the researchers reduced the amount of oxidized lipids in the animals with pulmonary hypertension.

One of the hallmarks of pulmonary hypertension is a proliferation of smooth muscle cells in the lungs, which is harmful because it narrows the lungs' small blood vessels.

Additionally, Eghbali's team found reduced levels of microRNA-193 in the blood and lung tissue of human patients with the disease and discovered that they could slow the proliferation of the smooth muscle cells by increasing levels of microRNA-193 in the cells that had been isolated from these patients' lungs.

Further research will be required to test the potential of the HDL-related peptide and microRNA-193 in human disease, and to better understand how the levels of oxidized lipids in the blood may correlate to disease severity in people with pulmonary arterial hypertension.

###

The study was funded in part by the American Heart Association, the National Institute of Health, the UCLA Clinical and Translational Science Institute and the Iris Cantor–UCLA Women's Health Center executive advisory board.

The study's other authors were Dr. Soban Umar, Andrea Iorga, Gabriel Wong, Denise Mai and Dr. Kaveh Navab of the division of molecular medicine at UCLA's department of anesthesiology; David Meriwether, Dr. Mohamad Navab, Dr. Alan Fogelman and Dr. Srinivasa Reddy of the division of cardiology at UCLA's department of medicine; Dr. David Ross of the division of pulmonary critical care medicine at the David Geffen School of Medicine at UCLA's department of medicine; and Francois Potus, Sandra Breuils-Bonnet, Dr. Steve Provencher and Dr. Sébastien Bonnet of Laval University in Québec, Canada.

All of the intellectual property for the HDL-related peptide is owned by the University of California Regents and managed by the UCLA Office of Intellectual Property and Industry Sponsored Research. The technology is currently licensed exclusively to Bruin Pharma Inc. Fogelman, Navab and Reddy are principals in Bruin Pharma, and Fogelman is an officer in the company. Other disclosures are listed in the manuscript.

Rachel Champeau | Eurek Alert!
Further information:
http://www.uclahealth.org/

Further reports about: HDL Health Medicine Protein UCLA blood cholesterol hypertension lung pulmonary

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>