Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein in 'good cholesterol' may be a key to treating pulmonary hypertension

28.08.2014

Oxidized lipids are known to play a key role in inflaming blood vessels and hardening arteries, which causes diseases like atherosclerosis.

A new study at UCLA demonstrates that they may also contribute to pulmonary hypertension, a serious lung disease that narrows the small blood vessels in the lungs.


This images shows the differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent (left) treated with the HDL peptide. Note the very narrowed lung artery, and thick walls and larger chamber of the right heart in the diseased animal and improvements with 4F peptide treatment.

Credit: UCLA


This image shows the differences in the structure of a small lung artery (top row) and heart (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent (right) treated with the molecule microRNA193. Note the very narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with microRNA-193 treatment.

Credit: UCLA

Using a rodent model, the researchers showed that a peptide mimicking part of the main protein in high-density lipoprotein (HDL), the so-called "good" cholesterol, may help reduce the production of oxidized lipids in pulmonary hypertension. They also found that reducing the amount of oxidized lipids improved the rodents' heart and lung function.

The study appears in the current online edition of the peer-reviewed journal Circulation.

A rare progressive condition, pulmonary hypertension can affect people of all ages. The disease makes it harder for the heart to pump blood through these vital organs, which can lead to heart failure.

"Our research helps unravel the mechanisms involved in the development of pulmonary hypertension," said Dr. Mansoureh Eghbali, the study's senior author and an associate professor of anesthesiology at the David Geffen School of Medicine at UCLA. "A key peptide related to HDL cholesterol that can help reduce these oxidized lipids may provide a new target for treatment development."

Lipids such as fatty acids become oxidized when they are exposed to free radicals — tiny particles that are produced when the body converts food into energy -- or when they are exposed to pollution, and in numerous other ways.

Although researchers have known that oxidized lipids played a role in the development of atherosclerosis and other vascular diseases, the UCLA team discovered higher-than-normal levels of oxidized proteins in rodents with pulmonary hypertension.

The UCLA researchers also knew that apoA-1, a protein that is a key component of HDL cholesterol, can reduce oxidized lipids, so they used a small peptide called 4F that mimics the action of apoA-1 and found that the 4F not only decreased the levels of oxidized lipids in the rodents, but also improved their heart and lung function. Specifically, the peptide restored the altered expression of a key molecule called micro ribonucleic acid (microRNA-193), which targets the action of essential enzymes involved in the production of oxidized lipids.

"The increased amounts of these oxidized lipids due to pulmonary hypertension keeps the expression of this molecule under check, which aggravates symptoms of the disease," said first author Dr. Salil Sharma, a UCLA postdoctoral researcher in anesthesiology.

By restoring the expression of microRNA-193 to its full potential, the researchers reduced the amount of oxidized lipids in the animals with pulmonary hypertension.

One of the hallmarks of pulmonary hypertension is a proliferation of smooth muscle cells in the lungs, which is harmful because it narrows the lungs' small blood vessels.

Additionally, Eghbali's team found reduced levels of microRNA-193 in the blood and lung tissue of human patients with the disease and discovered that they could slow the proliferation of the smooth muscle cells by increasing levels of microRNA-193 in the cells that had been isolated from these patients' lungs.

Further research will be required to test the potential of the HDL-related peptide and microRNA-193 in human disease, and to better understand how the levels of oxidized lipids in the blood may correlate to disease severity in people with pulmonary arterial hypertension.

###

The study was funded in part by the American Heart Association, the National Institute of Health, the UCLA Clinical and Translational Science Institute and the Iris Cantor–UCLA Women's Health Center executive advisory board.

The study's other authors were Dr. Soban Umar, Andrea Iorga, Gabriel Wong, Denise Mai and Dr. Kaveh Navab of the division of molecular medicine at UCLA's department of anesthesiology; David Meriwether, Dr. Mohamad Navab, Dr. Alan Fogelman and Dr. Srinivasa Reddy of the division of cardiology at UCLA's department of medicine; Dr. David Ross of the division of pulmonary critical care medicine at the David Geffen School of Medicine at UCLA's department of medicine; and Francois Potus, Sandra Breuils-Bonnet, Dr. Steve Provencher and Dr. Sébastien Bonnet of Laval University in Québec, Canada.

All of the intellectual property for the HDL-related peptide is owned by the University of California Regents and managed by the UCLA Office of Intellectual Property and Industry Sponsored Research. The technology is currently licensed exclusively to Bruin Pharma Inc. Fogelman, Navab and Reddy are principals in Bruin Pharma, and Fogelman is an officer in the company. Other disclosures are listed in the manuscript.

Rachel Champeau | Eurek Alert!
Further information:
http://www.uclahealth.org/

Further reports about: HDL Health Medicine Protein UCLA blood cholesterol hypertension lung pulmonary

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>