Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein illustrates muscle damage

Xin is a muscle damage biomarker

Researchers at McMaster University have discovered a protein that is only detectable after muscle damage, and it may serve as a way to measure injury.

"Our results highlight the protein called Xin as a muscle damage biomarker," said Thomas Hawke, principal investigator and an associate professor for the Department of Pathology and Molecular Medicine at McMaster.

"Regardless of the way in which muscle was damaged, either through trauma or disease, Xin was strongly correlated to the degree of damage."

The research will be published in the December issue of The American Journal of Pathology.

The paper explains that the protein Xin is undetectable in muscle biopsies of healthy subjects. However, when muscle damage occurs, Xin becomes detectable and shows a pattern that highly correlates with the amount of muscle damage.

The researchers found this to be true for healthy subjects who have damaged their muscles with intense exercise as well as numerous patients with various forms of muscle disease, including muscular dystrophy.

The research was funded by an operating grant from CIHR and the Muscular Dystrophy Association of Canada.

Editors: The research article has been posted to ScienceDirect and should follow shortly on

A photo of Thomas Hawke is attached.

For further information:

Veronica McGuire
Media Relations
Faculty of Health Sciences
McMaster University
905-525-9140, ext. 22169

Veronica McGuire | EurekAlert!
Further information:

Further reports about: McMaster Pathology muscle damage muscle damage biomarker

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>