Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prosthetic retina offers simple solution to restoring sight

18.05.2012
A device which could restore sight to patients with one of the most common causes of blindness in the developed world is being developed in an international partnership.

Researchers from the University of Strathclyde and Stanford University in California are creating a prosthetic retina for patients of age related macular degeneration (AMD), which affects one in 500 patients aged between 55 and 64 and one in eight aged over 85.

The device would be simpler in design and operation than existing models. It acts by electrically stimulating neurons in the retina, which are left relatively unscathed by the effects of AMD while other ‘image capturing’ cells, known as photoreceptors, are lost.

It would use video goggles to deliver energy and images directly to the eye and be operated remotely via pulsed near infra-red light- unlike most prosthetic retinas, which are powered through coils that require complex surgery to be implanted.

The prosthetic retina is a thin silicon device that converts pulsed near infra-red light to electrical current that stimulates the retina and elicits visual perception. It requires no wires and would make surgical implantation simpler.

The device has been shown to produce encouraging responses in initial lab tests and is reported in an article published in Nature Photonics. The technology is now being developed further.

Dr Keith Mathieson, now a Reader in the Institute of Photonics at the University of Strathclyde in Glasgow, was one of the lead researchers and first author of the paper. He said: “AMD is a huge medical challenge and, with an aging population, is continuing to grow. This means that innovative, practical solutions are essential if sight is to be restored to people around the world with the condition.

“The prosthetic retina we are developing has been partly inspired by cochlear implants for the ear but with a camera instead of a microphone and, where many cochlear implants have a few channels, we are designing the retina to deal with millions of light sensitive nerve cells and sensory outputs.

“The implant is thin and wireless and so is easier to implant. Since it receives information on the visual scene through an infra-red beam projected through the eye, the device can take advantage of natural eye movements that play a crucial role in visual processing.”

The research was co-authored by Dr. Jim Loudin of Stanford and led by Professor Daniel Palanker, also of Stanford, and Professor Alexander Sher, of the University of California, Santa Cruz.

Professor Palanker said: "The current implants are very bulky, and the surgery to place the intraocular wiring for receiving, processing and power is difficult. With our device, the surgeon needs only to create a small pocket beneath the retina and then slip the photovoltaic cells inside it."

Dr Mathieson was supported through a fellowship from SU2P, a venture between academic institutions in Scotland and California aimed at extracting economic impact from their joint research portfolio in photonics and related technologies.

Strathclyde leads the collaboration, which also includes Stanford, the Universities of St Andrews, Heriot-Watt and Glasgow and the California Institute of Technology. SU2P was established through funding from Research Councils UK- as part of its Science Bridges awards- the Scottish Funding Council and Scottish Enterprise.

The research links to Photonics and Health Technologies at Strathclyde- two of the principal themes of the University’s Technology and Innovation Centre (TIC), a world-leading research and technology centre transforming the way universities, business, and industry collaborate.

Through Health Technologies at Strathclyde, academics work with industry and the health sector to find technologies for earlier, more accurate disease detection and better treatments, as well as life-long disease prevention.

The article in Nature Photonics can be seen at
17 May 2012

Paul Gallagher | EurekAlert!
Further information:
http://www.strath.ac.uk

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>