Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prosthetic retina offers simple solution to restoring sight

18.05.2012
A device which could restore sight to patients with one of the most common causes of blindness in the developed world is being developed in an international partnership.

Researchers from the University of Strathclyde and Stanford University in California are creating a prosthetic retina for patients of age related macular degeneration (AMD), which affects one in 500 patients aged between 55 and 64 and one in eight aged over 85.

The device would be simpler in design and operation than existing models. It acts by electrically stimulating neurons in the retina, which are left relatively unscathed by the effects of AMD while other ‘image capturing’ cells, known as photoreceptors, are lost.

It would use video goggles to deliver energy and images directly to the eye and be operated remotely via pulsed near infra-red light- unlike most prosthetic retinas, which are powered through coils that require complex surgery to be implanted.

The prosthetic retina is a thin silicon device that converts pulsed near infra-red light to electrical current that stimulates the retina and elicits visual perception. It requires no wires and would make surgical implantation simpler.

The device has been shown to produce encouraging responses in initial lab tests and is reported in an article published in Nature Photonics. The technology is now being developed further.

Dr Keith Mathieson, now a Reader in the Institute of Photonics at the University of Strathclyde in Glasgow, was one of the lead researchers and first author of the paper. He said: “AMD is a huge medical challenge and, with an aging population, is continuing to grow. This means that innovative, practical solutions are essential if sight is to be restored to people around the world with the condition.

“The prosthetic retina we are developing has been partly inspired by cochlear implants for the ear but with a camera instead of a microphone and, where many cochlear implants have a few channels, we are designing the retina to deal with millions of light sensitive nerve cells and sensory outputs.

“The implant is thin and wireless and so is easier to implant. Since it receives information on the visual scene through an infra-red beam projected through the eye, the device can take advantage of natural eye movements that play a crucial role in visual processing.”

The research was co-authored by Dr. Jim Loudin of Stanford and led by Professor Daniel Palanker, also of Stanford, and Professor Alexander Sher, of the University of California, Santa Cruz.

Professor Palanker said: "The current implants are very bulky, and the surgery to place the intraocular wiring for receiving, processing and power is difficult. With our device, the surgeon needs only to create a small pocket beneath the retina and then slip the photovoltaic cells inside it."

Dr Mathieson was supported through a fellowship from SU2P, a venture between academic institutions in Scotland and California aimed at extracting economic impact from their joint research portfolio in photonics and related technologies.

Strathclyde leads the collaboration, which also includes Stanford, the Universities of St Andrews, Heriot-Watt and Glasgow and the California Institute of Technology. SU2P was established through funding from Research Councils UK- as part of its Science Bridges awards- the Scottish Funding Council and Scottish Enterprise.

The research links to Photonics and Health Technologies at Strathclyde- two of the principal themes of the University’s Technology and Innovation Centre (TIC), a world-leading research and technology centre transforming the way universities, business, and industry collaborate.

Through Health Technologies at Strathclyde, academics work with industry and the health sector to find technologies for earlier, more accurate disease detection and better treatments, as well as life-long disease prevention.

The article in Nature Photonics can be seen at
17 May 2012

Paul Gallagher | EurekAlert!
Further information:
http://www.strath.ac.uk

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>