Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


In prostate cancer prognosis, telomere length may matter

Like the plastic caps at the end of shoelaces, telomeres protect — in their case — the interior-gene containing parts of chromosomes that carry a cell's instructional material.

Cancer cells are known to have short telomeres, but just how short they are from cancer cell to cancer cell may be a determining factor in a prostate cancer patient's prognosis, according to a study led by Johns Hopkins scientists.

"Doctors are looking for new ways to accurately predict prostate cancer patients' prognoses, because the current methods that use disease stage, Gleason score, and PSA are not perfect," says Alan Meeker, Ph.D., assistant professor of pathology at The Johns Hopkins University School of Medicine and its Kimmel Cancer Center. "Telomere shortening is common in cancer, but the degree of shortening varies from one cancer cell to another within each patient, and this variability may give us a better idea of how prostate cancers behave."

In the study, described in the October issue of Cancer Discovery, the scientists studied tissue samples from 596 men surgically treated for prostate cancer thought to be confined to the prostate and who were participants in a long-term follow-up study on men's health. Then, they used images of prostate cancer cells and nearby cells called stroma, which include smooth muscle and fibroblast cells, taken from surgery-tissue samples of each patient.

Meeker and his team used a technique they developed called telomere-specific fluorescent in situ hybridization (TELI-FISH) to measure telomere length in cancer and stromal cells. The technique uses fluorescent-labeled probes specific for particular locations in DNA, and is commonly used to detect or confirm gene or chromosome abnormalities. In the new study, a fluorescent probe specific for telomere regions was added to the cells, enabling the scientists to identify these specific chromosomal locations under a microscope and measure the level of fluorescence that corresponds to telomere length.

After determining telomere length for more than 40,000 cells among the samples, disease-pattern experts at Johns Hopkins then correlated telomere length measurements in the cancer and stromal cells with each patient's survival.

"Men who had a combination of more variable telomere length among cancer cells and shorter telomere length in stromal cells were more likely to develop metastatic disease and die sooner from their prostate cancer than other men," says Elizabeth Platz, Sc.D., M.P.H., professor of epidemiology at The Johns Hopkins Bloomberg School of Public Health and the Martin D. Abeloff Scholar in Cancer Prevention at the Johns Hopkins Kimmel Cancer Center.

In the group of 98 men with more variable telomere length in cancer cells and shorter telomeres in stromal cells, 20 died of their prostate cancer an average of 8.4 years after diagnosis. Accounting for standard prognostic factors, these men were 14 times more likely to die of their prostate cancer compared with another group of 98 men whose telomeres had less variable length among cancer cells and were longer in stromal cells. In this group, only one man died, and that was after 16.5 years.

"Our studies strongly suggest that the combination of telomere length in stromal cells and its variability among prostate cancer cells could be a marker for prostate cancer prognosis," says Platz.

Meeker and Platz are continuing to study additional groups of patients and are now using an automated fluorescence microscope and computer software to speed the collection of tissue images and extract telomere data.


Funding for the study was provided by the Department of Defense, the National Institutes of Health's National Cancer Institute (CA58236, CA55075, CA72036, CA133891, CA141298) and National Heart, Lung, and Blood Institute (HL35464), the Seraph Foundation, and the Prostate Cancer Foundation.

Tissue samples used for the study were taken from men enrolled in Harvard's Health Professionals Follow-Up Study.

Scientists contributing to the research include Christopher M. Heaphy, Ghil Suk Yoon, Sarah B. Peskoe, Corinne E. Joshu, Thomas K. Lee, Jessica L. Hicks, and Angelo M. De Marzo at Johns Hopkins; and Edward Giovannucci, Stacey A. Kenfield, Lorelei A. Mucci, and Meir J. Stampfer at Harvard School of Public Health.


Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's mission is to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, more than 38 primary health care outpatient sites and other businesses that care for national and international patients and activities. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years by U.S. News & World Report.

Johns Hopkins Kimmel Cancer Center
Office of Public Affairs
Media Contacts:
Vanessa Wasta
Amy Mone

Vanessa Wasta | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>