Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In prostate cancer prognosis, telomere length may matter

27.09.2013
Like the plastic caps at the end of shoelaces, telomeres protect — in their case — the interior-gene containing parts of chromosomes that carry a cell's instructional material.

Cancer cells are known to have short telomeres, but just how short they are from cancer cell to cancer cell may be a determining factor in a prostate cancer patient's prognosis, according to a study led by Johns Hopkins scientists.

"Doctors are looking for new ways to accurately predict prostate cancer patients' prognoses, because the current methods that use disease stage, Gleason score, and PSA are not perfect," says Alan Meeker, Ph.D., assistant professor of pathology at The Johns Hopkins University School of Medicine and its Kimmel Cancer Center. "Telomere shortening is common in cancer, but the degree of shortening varies from one cancer cell to another within each patient, and this variability may give us a better idea of how prostate cancers behave."

In the study, described in the October issue of Cancer Discovery, the scientists studied tissue samples from 596 men surgically treated for prostate cancer thought to be confined to the prostate and who were participants in a long-term follow-up study on men's health. Then, they used images of prostate cancer cells and nearby cells called stroma, which include smooth muscle and fibroblast cells, taken from surgery-tissue samples of each patient.

Meeker and his team used a technique they developed called telomere-specific fluorescent in situ hybridization (TELI-FISH) to measure telomere length in cancer and stromal cells. The technique uses fluorescent-labeled probes specific for particular locations in DNA, and is commonly used to detect or confirm gene or chromosome abnormalities. In the new study, a fluorescent probe specific for telomere regions was added to the cells, enabling the scientists to identify these specific chromosomal locations under a microscope and measure the level of fluorescence that corresponds to telomere length.

After determining telomere length for more than 40,000 cells among the samples, disease-pattern experts at Johns Hopkins then correlated telomere length measurements in the cancer and stromal cells with each patient's survival.

"Men who had a combination of more variable telomere length among cancer cells and shorter telomere length in stromal cells were more likely to develop metastatic disease and die sooner from their prostate cancer than other men," says Elizabeth Platz, Sc.D., M.P.H., professor of epidemiology at The Johns Hopkins Bloomberg School of Public Health and the Martin D. Abeloff Scholar in Cancer Prevention at the Johns Hopkins Kimmel Cancer Center.

In the group of 98 men with more variable telomere length in cancer cells and shorter telomeres in stromal cells, 20 died of their prostate cancer an average of 8.4 years after diagnosis. Accounting for standard prognostic factors, these men were 14 times more likely to die of their prostate cancer compared with another group of 98 men whose telomeres had less variable length among cancer cells and were longer in stromal cells. In this group, only one man died, and that was after 16.5 years.

"Our studies strongly suggest that the combination of telomere length in stromal cells and its variability among prostate cancer cells could be a marker for prostate cancer prognosis," says Platz.

Meeker and Platz are continuing to study additional groups of patients and are now using an automated fluorescence microscope and computer software to speed the collection of tissue images and extract telomere data.

###

Funding for the study was provided by the Department of Defense, the National Institutes of Health's National Cancer Institute (CA58236, CA55075, CA72036, CA133891, CA141298) and National Heart, Lung, and Blood Institute (HL35464), the Seraph Foundation, and the Prostate Cancer Foundation.

Tissue samples used for the study were taken from men enrolled in Harvard's Health Professionals Follow-Up Study.

Scientists contributing to the research include Christopher M. Heaphy, Ghil Suk Yoon, Sarah B. Peskoe, Corinne E. Joshu, Thomas K. Lee, Jessica L. Hicks, and Angelo M. De Marzo at Johns Hopkins; and Edward Giovannucci, Stacey A. Kenfield, Lorelei A. Mucci, and Meir J. Stampfer at Harvard School of Public Health.

JOHNS HOPKINS MEDICINE

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's mission is to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, more than 38 primary health care outpatient sites and other businesses that care for national and international patients and activities. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years by U.S. News & World Report.

Johns Hopkins Kimmel Cancer Center
Office of Public Affairs
Media Contacts:
Vanessa Wasta
410-614-2916
wasta@jhmi.edu
Amy Mone
410-614-2915
amone@jhmi.edu

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>