Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First proof in patients of an improved 'magic bullet' for cancer detection and radio-therapy

13.09.2011
Oncologists have long sought a powerful "magic bullet" that can find tumors wherever they hide in the body so that they can be imaged and then destroyed.

Until recently scientists accepted the notion that such an agent, an agonist, needed to enter and accumulate in the cancerous cells to act. An international research team has now shown in cancer patients that an investigational agent that sticks onto the surface of tumor cells without triggering internalization, an antagonist, may be safer and even more effective than agonists.

One of the Salk Institute's leading researchers, Dr. Jean Rivier, professor in The Clayton Foundation Laboratories for Peptide Biology and holder of the Frederik Paulsen Chair in Neurosciences and his Swiss collaborator, Dr. Jean Claude Reubi, University of Berne and Adjunct Professor at Salk, co-authored a pilot study, published in the September issue of the Journal of Nuclear Medicine, of five patients and demonstrated that their "antagonist", 111In-DOTA-BASS, outperformed the "agonist" agent, OctreoScan, that is widely used in the clinic to image neuroendocrine tumors bearing somatostatin receptors.

"This is the first proof of principle in humans that labeled peptide antagonists can effectively image tumors. Additional research suggests that we could one day use a different radioactive metal to effectively kill the tumors," said Dr. Rivier.

Dr. Reubi, a molecular pathologist, and Dr. Rivier, a chemist, collaborated in the design and selection of natIn-DOTA-BASS for human testing, and Dr. Helmut R. Maecke, a radio chemist, loaded DOTA-BASS with its radioactive marker and tested the compound before use in human. Afterward, the "first in man" study with the radioactive loaded DOTA-BASS was performed at the University Hospital in Freiburgby Drs. Damian Wild, Melpomeni Fani, Martin Behe, Ingo Brink, Helmut R. Maecke, and Wolfgang A. Weber.

The genesis of this study goes back to 1973, when a team of Salk researchers, which included Drs. Brazeau, Vale, Burgus, Rivier, and Roger Guillemin, a 1977 Nobel laureate, isolated and characterized somatostatin, a peptide produced by neuroendocrine glands. The scientists found that the normal function of somatostatin is to block the release of growth hormone throughout the body, which includes inhibiting the release of thyroid-stimulating hormone (TSH) from the thyroid.

Drs. Rivier, Reubi and their colleagues from Germany showed that 111In-DOTA-BASS bound to a greater number of somatostatin receptors on cancer cells than the agonist OctreoScan, and that it did accumulate in normal tissue (liver and kidney) to a lesser extent.

The prototype antagonist therapy has been revamped, and the version studied in the Journal of Nuclear Medicine publication, 111In-DOTA-BASS, detected 25 of 28 metastatic neuroendocrine tumors in the patients, whereas OctreoScan detected only 17.

In-DOTA-BASS has been licensed to a pharmaceutical company for clinical trial development, according to Rivier, who adds that other researchers are exploring an antagonist approach for other G-protein coupled receptors that are abundantly expressed on cancer cells.

The study was funded in part by the Swiss National Science Foundation (JCR).

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: 111In-DOTA-BASS DOTA-BASS Medicine Nuclear Nuclear Medicine OctreoScan Rivier cancer cells

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>