Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First proof in patients of an improved 'magic bullet' for cancer detection and radio-therapy

13.09.2011
Oncologists have long sought a powerful "magic bullet" that can find tumors wherever they hide in the body so that they can be imaged and then destroyed.

Until recently scientists accepted the notion that such an agent, an agonist, needed to enter and accumulate in the cancerous cells to act. An international research team has now shown in cancer patients that an investigational agent that sticks onto the surface of tumor cells without triggering internalization, an antagonist, may be safer and even more effective than agonists.

One of the Salk Institute's leading researchers, Dr. Jean Rivier, professor in The Clayton Foundation Laboratories for Peptide Biology and holder of the Frederik Paulsen Chair in Neurosciences and his Swiss collaborator, Dr. Jean Claude Reubi, University of Berne and Adjunct Professor at Salk, co-authored a pilot study, published in the September issue of the Journal of Nuclear Medicine, of five patients and demonstrated that their "antagonist", 111In-DOTA-BASS, outperformed the "agonist" agent, OctreoScan, that is widely used in the clinic to image neuroendocrine tumors bearing somatostatin receptors.

"This is the first proof of principle in humans that labeled peptide antagonists can effectively image tumors. Additional research suggests that we could one day use a different radioactive metal to effectively kill the tumors," said Dr. Rivier.

Dr. Reubi, a molecular pathologist, and Dr. Rivier, a chemist, collaborated in the design and selection of natIn-DOTA-BASS for human testing, and Dr. Helmut R. Maecke, a radio chemist, loaded DOTA-BASS with its radioactive marker and tested the compound before use in human. Afterward, the "first in man" study with the radioactive loaded DOTA-BASS was performed at the University Hospital in Freiburgby Drs. Damian Wild, Melpomeni Fani, Martin Behe, Ingo Brink, Helmut R. Maecke, and Wolfgang A. Weber.

The genesis of this study goes back to 1973, when a team of Salk researchers, which included Drs. Brazeau, Vale, Burgus, Rivier, and Roger Guillemin, a 1977 Nobel laureate, isolated and characterized somatostatin, a peptide produced by neuroendocrine glands. The scientists found that the normal function of somatostatin is to block the release of growth hormone throughout the body, which includes inhibiting the release of thyroid-stimulating hormone (TSH) from the thyroid.

Drs. Rivier, Reubi and their colleagues from Germany showed that 111In-DOTA-BASS bound to a greater number of somatostatin receptors on cancer cells than the agonist OctreoScan, and that it did accumulate in normal tissue (liver and kidney) to a lesser extent.

The prototype antagonist therapy has been revamped, and the version studied in the Journal of Nuclear Medicine publication, 111In-DOTA-BASS, detected 25 of 28 metastatic neuroendocrine tumors in the patients, whereas OctreoScan detected only 17.

In-DOTA-BASS has been licensed to a pharmaceutical company for clinical trial development, according to Rivier, who adds that other researchers are exploring an antagonist approach for other G-protein coupled receptors that are abundantly expressed on cancer cells.

The study was funded in part by the Swiss National Science Foundation (JCR).

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: 111In-DOTA-BASS DOTA-BASS Medicine Nuclear Nuclear Medicine OctreoScan Rivier cancer cells

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>