Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New promising obesity drug may have huge potential

23.10.2008
According to trials, a new obesity drug, Tesofensine, which may be launched on the world market in a few years, can produce weight loss twice that of currently approved obesity drugs. The Danish company Neurosearch and a number of researchers at the Faculty of Life Sciences at University of Copenhagen are behind the promising findings.

Tesofensine can produce weight loss twice that of currently approved obesity drugs, and should be studied in phase III trials. These are the conclusions of an Article published early Online and in an upcoming edition of The Lancet, written by Professor Arne Astrup, Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Denmark, and colleagues.

Increased obesity prevalence worldwide, in both developed and developing countries, results in more people with cardiovascular disease, diabetes, musculoskeletal disorders, and cancer. Whilst gastric bypass surgery substantially reduces bodyweight and obesity-related disease, the researchers believe a treatment gap exists between the effectiveness of currently marketed obesity drugs and gastric-bypass surgery.

Tesofensine – which inhibits the presynaptic uptake of the neurotransmitters noradrenaline, dopamine and serotonin in the brain – has been shown to be safe and effective in animal models. It also caused unintended weight loss when it was given obese patients with Parkinson’s or Alzheimer’s disease when it was researched for those conditions. The drug works by suppressing hunger, leading to an energy deficit which burns off excess body fat.

This randomised, placebo-controlled phase II study was done in five Danish obesity management centres, and involved 203 obese patients (body mass index 30-40 kg/m2), weighing a mean of just over 100kg. They were prescribed a limited-energy diet and assigned to tesofensine 0.25mg (52 patients), 0.5 mg (50), 1.0 mg (49), or placebo (52), all once daily for 24 weeks. The primary outcome was percentage change in bodyweight. A total of 161 patients completed the study, and an analysis showed that the mean weight loss recorded for placebo and diet was 2.2kg and for tesofensine 0.25mg, 0.5mg and 1.0mg it was 6.7kg, 11.3kg, and 12.8kg respectively. For the 0.5mg and 1.0mg doses, this represented a weight loss around twice that attained using sibutramine or rimonabant*, the currently-approved therapies in Europe. Blood pressure was increased in the 1.0mg group.The most common side-effects caused by tesofensine were dry mouth, nausea, constipation, hard stools, diarrhoea, and insomnia.

The authors conclude that the 0.5mg dose of tesofensine is more promising than the 1.0mg dose because it produces a similar weight loss with less side-effects. They say: “We conclude that tesofensine 0.5 mg, once daily for 6 months, has the potential to produce twice the weight loss as currently approved drugs; however, larger phase III studies are needed to substantiate our findings.”

Anne Dorte Bach | alfa
Further information:
http://www.ku.dk

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>