Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New promising obesity drug may have huge potential

23.10.2008
According to trials, a new obesity drug, Tesofensine, which may be launched on the world market in a few years, can produce weight loss twice that of currently approved obesity drugs. The Danish company Neurosearch and a number of researchers at the Faculty of Life Sciences at University of Copenhagen are behind the promising findings.

Tesofensine can produce weight loss twice that of currently approved obesity drugs, and should be studied in phase III trials. These are the conclusions of an Article published early Online and in an upcoming edition of The Lancet, written by Professor Arne Astrup, Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Denmark, and colleagues.

Increased obesity prevalence worldwide, in both developed and developing countries, results in more people with cardiovascular disease, diabetes, musculoskeletal disorders, and cancer. Whilst gastric bypass surgery substantially reduces bodyweight and obesity-related disease, the researchers believe a treatment gap exists between the effectiveness of currently marketed obesity drugs and gastric-bypass surgery.

Tesofensine – which inhibits the presynaptic uptake of the neurotransmitters noradrenaline, dopamine and serotonin in the brain – has been shown to be safe and effective in animal models. It also caused unintended weight loss when it was given obese patients with Parkinson’s or Alzheimer’s disease when it was researched for those conditions. The drug works by suppressing hunger, leading to an energy deficit which burns off excess body fat.

This randomised, placebo-controlled phase II study was done in five Danish obesity management centres, and involved 203 obese patients (body mass index 30-40 kg/m2), weighing a mean of just over 100kg. They were prescribed a limited-energy diet and assigned to tesofensine 0.25mg (52 patients), 0.5 mg (50), 1.0 mg (49), or placebo (52), all once daily for 24 weeks. The primary outcome was percentage change in bodyweight. A total of 161 patients completed the study, and an analysis showed that the mean weight loss recorded for placebo and diet was 2.2kg and for tesofensine 0.25mg, 0.5mg and 1.0mg it was 6.7kg, 11.3kg, and 12.8kg respectively. For the 0.5mg and 1.0mg doses, this represented a weight loss around twice that attained using sibutramine or rimonabant*, the currently-approved therapies in Europe. Blood pressure was increased in the 1.0mg group.The most common side-effects caused by tesofensine were dry mouth, nausea, constipation, hard stools, diarrhoea, and insomnia.

The authors conclude that the 0.5mg dose of tesofensine is more promising than the 1.0mg dose because it produces a similar weight loss with less side-effects. They say: “We conclude that tesofensine 0.5 mg, once daily for 6 months, has the potential to produce twice the weight loss as currently approved drugs; however, larger phase III studies are needed to substantiate our findings.”

Anne Dorte Bach | alfa
Further information:
http://www.ku.dk

More articles from Health and Medicine:

nachricht When writing interferes with hearing
28.03.2017 | Université de Genève

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>