Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising approach to slow brain degeneration in a model of Huntington's disease uncovered

26.05.2014

Mechanism uncovered could also help preserve neuron function in Alzheimer's disease, traumatic brain injury and other neurodegenerative conditions

Research presented by Dr. Lynn Raymond, from the University of British Columbia, shows that blocking a specific class of glutamate receptors, called extrasynaptic NMDA receptors, can improve motor learning and coordination, and prevent cell death in animal models of Huntington disease.

As Huntington disease is an inherited condition that can be detected decades before any clinical symptoms are seen in humans, a better understanding of the earliest changes in brain cell (neuronal) function, and the molecular pathways underlying those changes, could lead to preventive treatments that delay the onset of symptoms and neurodegeneration.

"After more than a decade of research on the pre-symptomatic phase of Huntington disease, markers are being developed to facilitate assessment of interventional therapy in individuals carrying the genetic mutation for Huntington disease, before they become ill. This will make it possible to delay onset of disease," says Dr. Raymond. These results were presented at the 2014 Canadian Neuroscience Meeting, the 8th annual meeting of the Canadian Association for Neuroscience - Association Canadienne des Neurosciences (CAN-ACN), held in Montreal, May 25-28.

The neurotransmitter glutamate has long been known to promote cell death, and its toxic effects occur through the action of a family of receptors known as the NMDARs (N-methyl-D-Aspartate ionotropic glutamate receptors). Unfortunately, treating disorders of the nervous system by blocking NMDARs has not been successful because such treatments have numerous side effects.

A recent hypothesis based on work from many scientists suggests that NMDARs located in different regions at the surface of neurons may have opposite effects, which would explain why blocking all NMDARs is not a good treatment option. A synapse is a structure that allows one neuron to connect to another neuron and pass an electrical or chemical signal between them. Many receptors for neurotransmitters are located in synapses, as these are the main area where these chemical signals are transmitted.

However, receptors can also be found outside the synapse, and in this case are called extra-synaptic receptors. Many recent studies have revealed that NMDARs located at synapses act to increase survival signaling and promote learning and memory, whereas extra-synaptic NMDARs shut off survival signaling, interfere with learning mechanisms, and increase cell death pathways.

Dr. Raymond and her team were able, by using a drug that selectively blocks extra-synaptic NMDARs early, before the appearance of any symptoms, to delay the onset of Huntington-like symptoms in a mouse model of the disease. These promising results could lead to new treatment avenues for Huntington patients, and delay the appearance of symptoms. "The drug we used, memantine, is currently being used to treat moderate-stage Alzheimer disease patients. Our results suggest that clinical studies of memantine and similarly-acting drugs in Huntington disease, particularly in the pre-symptomatic stage, are warranted,"says Dr. Raymond.

Extra-synaptic NMDARs have also been shown to be involved in other neurodegenerative diseases, such as Alzheimer disease, and in damage caused by traumatic brain injury and some forms of stroke. These results therefore suggest novel treatment avenues for many conditions in which neurons degenerate and die, a new way to protect neurons before the appearance of symptoms of neurodegeneration.

###

This research was supported by: Canadian Institutes of Health Research, Huntington Society of Canada, Cure Huntington Disease Initiative, and Michael Smith Foundation for Health Research.

About the Canadian Association for Neuroscience:

The Canadian Association for Neuroscience is the largest association dedicated to the promotion of all fields of neuroscience research in Canada. The association has been organizing a yearly annual meeting since 2007. Learn more about our meeting at: http://www.can-acn.org/meeting2014

Julie Poupart | Eurek Alert!
Further information:
http://can-acn.org/

Further reports about: Huntington's NMDARs Neuroscience glutamate neurons symptoms treatments

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>