Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising approach to slow brain degeneration in a model of Huntington's disease uncovered

26.05.2014

Mechanism uncovered could also help preserve neuron function in Alzheimer's disease, traumatic brain injury and other neurodegenerative conditions

Research presented by Dr. Lynn Raymond, from the University of British Columbia, shows that blocking a specific class of glutamate receptors, called extrasynaptic NMDA receptors, can improve motor learning and coordination, and prevent cell death in animal models of Huntington disease.

As Huntington disease is an inherited condition that can be detected decades before any clinical symptoms are seen in humans, a better understanding of the earliest changes in brain cell (neuronal) function, and the molecular pathways underlying those changes, could lead to preventive treatments that delay the onset of symptoms and neurodegeneration.

"After more than a decade of research on the pre-symptomatic phase of Huntington disease, markers are being developed to facilitate assessment of interventional therapy in individuals carrying the genetic mutation for Huntington disease, before they become ill. This will make it possible to delay onset of disease," says Dr. Raymond. These results were presented at the 2014 Canadian Neuroscience Meeting, the 8th annual meeting of the Canadian Association for Neuroscience - Association Canadienne des Neurosciences (CAN-ACN), held in Montreal, May 25-28.

The neurotransmitter glutamate has long been known to promote cell death, and its toxic effects occur through the action of a family of receptors known as the NMDARs (N-methyl-D-Aspartate ionotropic glutamate receptors). Unfortunately, treating disorders of the nervous system by blocking NMDARs has not been successful because such treatments have numerous side effects.

A recent hypothesis based on work from many scientists suggests that NMDARs located in different regions at the surface of neurons may have opposite effects, which would explain why blocking all NMDARs is not a good treatment option. A synapse is a structure that allows one neuron to connect to another neuron and pass an electrical or chemical signal between them. Many receptors for neurotransmitters are located in synapses, as these are the main area where these chemical signals are transmitted.

However, receptors can also be found outside the synapse, and in this case are called extra-synaptic receptors. Many recent studies have revealed that NMDARs located at synapses act to increase survival signaling and promote learning and memory, whereas extra-synaptic NMDARs shut off survival signaling, interfere with learning mechanisms, and increase cell death pathways.

Dr. Raymond and her team were able, by using a drug that selectively blocks extra-synaptic NMDARs early, before the appearance of any symptoms, to delay the onset of Huntington-like symptoms in a mouse model of the disease. These promising results could lead to new treatment avenues for Huntington patients, and delay the appearance of symptoms. "The drug we used, memantine, is currently being used to treat moderate-stage Alzheimer disease patients. Our results suggest that clinical studies of memantine and similarly-acting drugs in Huntington disease, particularly in the pre-symptomatic stage, are warranted,"says Dr. Raymond.

Extra-synaptic NMDARs have also been shown to be involved in other neurodegenerative diseases, such as Alzheimer disease, and in damage caused by traumatic brain injury and some forms of stroke. These results therefore suggest novel treatment avenues for many conditions in which neurons degenerate and die, a new way to protect neurons before the appearance of symptoms of neurodegeneration.

###

This research was supported by: Canadian Institutes of Health Research, Huntington Society of Canada, Cure Huntington Disease Initiative, and Michael Smith Foundation for Health Research.

About the Canadian Association for Neuroscience:

The Canadian Association for Neuroscience is the largest association dedicated to the promotion of all fields of neuroscience research in Canada. The association has been organizing a yearly annual meeting since 2007. Learn more about our meeting at: http://www.can-acn.org/meeting2014

Julie Poupart | Eurek Alert!
Further information:
http://can-acn.org/

Further reports about: Huntington's NMDARs Neuroscience glutamate neurons symptoms treatments

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>