Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising approach to slow brain degeneration in a model of Huntington's disease uncovered

26.05.2014

Mechanism uncovered could also help preserve neuron function in Alzheimer's disease, traumatic brain injury and other neurodegenerative conditions

Research presented by Dr. Lynn Raymond, from the University of British Columbia, shows that blocking a specific class of glutamate receptors, called extrasynaptic NMDA receptors, can improve motor learning and coordination, and prevent cell death in animal models of Huntington disease.

As Huntington disease is an inherited condition that can be detected decades before any clinical symptoms are seen in humans, a better understanding of the earliest changes in brain cell (neuronal) function, and the molecular pathways underlying those changes, could lead to preventive treatments that delay the onset of symptoms and neurodegeneration.

"After more than a decade of research on the pre-symptomatic phase of Huntington disease, markers are being developed to facilitate assessment of interventional therapy in individuals carrying the genetic mutation for Huntington disease, before they become ill. This will make it possible to delay onset of disease," says Dr. Raymond. These results were presented at the 2014 Canadian Neuroscience Meeting, the 8th annual meeting of the Canadian Association for Neuroscience - Association Canadienne des Neurosciences (CAN-ACN), held in Montreal, May 25-28.

The neurotransmitter glutamate has long been known to promote cell death, and its toxic effects occur through the action of a family of receptors known as the NMDARs (N-methyl-D-Aspartate ionotropic glutamate receptors). Unfortunately, treating disorders of the nervous system by blocking NMDARs has not been successful because such treatments have numerous side effects.

A recent hypothesis based on work from many scientists suggests that NMDARs located in different regions at the surface of neurons may have opposite effects, which would explain why blocking all NMDARs is not a good treatment option. A synapse is a structure that allows one neuron to connect to another neuron and pass an electrical or chemical signal between them. Many receptors for neurotransmitters are located in synapses, as these are the main area where these chemical signals are transmitted.

However, receptors can also be found outside the synapse, and in this case are called extra-synaptic receptors. Many recent studies have revealed that NMDARs located at synapses act to increase survival signaling and promote learning and memory, whereas extra-synaptic NMDARs shut off survival signaling, interfere with learning mechanisms, and increase cell death pathways.

Dr. Raymond and her team were able, by using a drug that selectively blocks extra-synaptic NMDARs early, before the appearance of any symptoms, to delay the onset of Huntington-like symptoms in a mouse model of the disease. These promising results could lead to new treatment avenues for Huntington patients, and delay the appearance of symptoms. "The drug we used, memantine, is currently being used to treat moderate-stage Alzheimer disease patients. Our results suggest that clinical studies of memantine and similarly-acting drugs in Huntington disease, particularly in the pre-symptomatic stage, are warranted,"says Dr. Raymond.

Extra-synaptic NMDARs have also been shown to be involved in other neurodegenerative diseases, such as Alzheimer disease, and in damage caused by traumatic brain injury and some forms of stroke. These results therefore suggest novel treatment avenues for many conditions in which neurons degenerate and die, a new way to protect neurons before the appearance of symptoms of neurodegeneration.

###

This research was supported by: Canadian Institutes of Health Research, Huntington Society of Canada, Cure Huntington Disease Initiative, and Michael Smith Foundation for Health Research.

About the Canadian Association for Neuroscience:

The Canadian Association for Neuroscience is the largest association dedicated to the promotion of all fields of neuroscience research in Canada. The association has been organizing a yearly annual meeting since 2007. Learn more about our meeting at: http://www.can-acn.org/meeting2014

Julie Poupart | Eurek Alert!
Further information:
http://can-acn.org/

Further reports about: Huntington's NMDARs Neuroscience glutamate neurons symptoms treatments

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>