Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project start: New active substance targeting dreaded hospital pathogens

29.05.2015

In the German Center for Infection Research (DZIF), scientists from the universities of Tübingen, Münster and Munich join forces and prepare together with the company Hyglos clinical studies on an active substance against the dreaded hospital pathogen Staphylococcus aureus: A highly effective protein from bacteria-specific viruses, so-called bacteriophages, shall rapidly kill the bacteria, which frequently occur in the nose. Due to the specific action, the natural microflora is maintained. Such prophylactic treatment of nasal colonization could counteract the spread of especially methicillin-resistant staphylococcus aureus (MRSA) in hospitals and thereby prevent infections in patients.

Every third person, according to expert estimates, carries the bacterium Staphylococcus aureus in their nose - which is not dangerous in the case of healthy individuals, however quickly becomes a problem if the carrier is admitted to a hospital. This since the pathogen can enter for example into wounds in connection with surgery and potentially cause dangerous infections.

In addition there is a large risk of spread of the pathogen as a hospital bug. Especially feared are methicillin-resistant Staphylococcus aureus isolates, abbreviated MRSA, because of their resistance to many of the commonly used antibiotics.

“A rapid detection and effective elimination of MRSA colonization in the nose prior to a hospital stay is a crucial step in combating these hospital germs", so the conviction of Prof. Dr. Karsten Becker at the University Hospital Münster. The bacteria in the nose are increasingly resistant to the currently used antibiotic mupirocin and the duration of the decolonization and follow-up control is around one week. Under such circumstances, no effective MRSA prevention is possible for patients immediately in need of surgery.

Together with the Hyglos GmbH in Bernried and with support from the BMBF, scientists at the University Hospital Münster have developed a specific active substance in recent years and studied its effect: A phage lytic enzyme that is a protein from viruses that infect bacteria, specifically attacks Staphylococcus aureus cells and dissolve them. The protein was synthetically produced and optimized as a "designer protein" with the working name HY-133.

"We do like to describe it as a MRSA-killing protein, even if it sounds somewhat sensational," explains Dr. Wolf-gang Mutter from Hyglos GmbH. In fact, all Staphylococcus aureus cells, whether resistant or not resistant, will be killed by this new active substance within a very short time. And this without the natural microflora in the nose being destroyed nor does resistance develop.

In cooperation with the microbiologist Prof. Dr. Andreas Peschel, who coordinates the DZIF research on "Healthcare-associated and antibiotic-resistant infections", the active substance will now be prepared for clinical testing. More than 1.5 million euros will be provided for HY-133 development within the DZIF:

The substance will first be manufactured under GMP guidelines (manufac-turing practice according to pharmaceutical standards) and subsequently be test-ed for preclinical toxicology. The pharmacist Prof. Dr. Gerhard Winter at the LMU Munich will develop a stable formulation, so that the substance may be conven-iently and safely administered as a gel or in any other form to the patient.

The project will be conducted in view of subsequent clinical trials, in which the rapid decolonization of Staphylococcus aureus strains will be studied in the nasal flora of volunteers. "In addition to new antibiotics and vaccines we urgently need specific agents for decolonization of problematic germs. The HY-133 protein is a highly innovative active substance for this purpose, which could lead to many simi-lar development programs", Prof. Dr. Andreas Peschel adds.

That the fight against resistant hospital germs is taken very seriously at the political level, is reflected in the coming week: At the G7 summit in Elmau the topic antibi-otic resistance is on the agenda.

In case you need any pictures, please contact:
E-mail: karolina.heed@hyglos.de

Contact
Prof. Dr. Andreas Peschel
University of Tübingen
DZIF-Coordinator „Healthcare-associated and antibiotic-resistant infections“
T +49 7071-29-81515
E-mail: Andreas.Peschel@med.uni-tuebingen.de

Prof. Dr. Karsten Becker
University Hospital Münster
T +49(0) 251-83-55375
E-mail: kbecker@uni-muenster.de

Prof. Dr. Gerhard Winter
Ludwig Maximilian University of Munich
T +49(0) 89-2180-77022
E-mail: gerhard.winter@cup.uni-muenchen.de

Dr. Wolfgang Mutter
Hyglos GmbH, Bernried am Starnberger See
T +49(0)8158-9060-201
E-mail: wolfgang.mutter@hyglos.de

Ms. Karola Neubert and Ms. Janna Schmidt
DZIF-Press Office
T +49531-6181-1170/1154
E-mail: presse@dzif.de


At the German Center for Infection Research (DZIF) nationwide around 300 scien-tists from 32 institutions jointly develop new approaches for prevention, diagnosis and treatment of infectious diseases. One of the focal points is the research on hospital germs and antibiotic-resistant bacteria. The DZIF is funded by the BMBF. More information on www.dzif.de

University of Tübingen – Infectious Diseases and Microbiology form a major focus of research at the University of Tübingen, especially in the Interfaculty Institute for Microbiology and Infection Medicine (IMIT). The study of staphylococci, bacte-ria that often develop resistance to antibiotics and cause infections in the hospital, is a particular focus of the IMIT researchers. www.uni-tuebingen.de

University Hospital Münster (UKM) represents cutting-edge medicine in the German hospital landscape as well as research at the highest international level. Important research priorities of the UKM Institute of Medical Microbiology are staphylococci - pathogens and infections - as well as diagnostics, typing, character-ization and susceptibility testing of microorganisms. www.klinikum.uni-muenster.de

Ludwig Maximilian University of Munich (LMU), Department of Pharmacy - The development of stable formulations for protein drugs and the administration of new biotech drugs in sustained release forms or their local application are key research areas in Pharmaceutical Technology at the LMU. Only with appropriate forms of preparation it will be possible in the end, to successfully apply sensitive substances such as the new phage lytic enzyme. www.uni-muenchen.de

Hyglos GmbH is a biotechnology company based in the Biotechnology Center Bernried south of Munich. With its proprietary technology the Hyglos scientists develop highly specific bacteriophage-based agents for the detection and elimina-tion of harmful bacteria and bacterial toxins. Hyglos is an IAFP Innovation awardee for such technological advances. www.hyglos.com

Karola Neubert | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>