Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress in the development of new Parkinson’s drugs

22.10.2010
The side effects of the standard medication for Parkinson’s disease have long been a preoccupation of brain researchers. Now Daniella Rylander has presented new findings in a recently defended PhD thesis at Lund University that provide hope of more effective medication for those who suffer from the nerve cell disease.

In her thesis, neuroscience researcher Daniella Rylander presents two important findings that tackle different stages in the development of the uncontrollable jerky movements known as dyskinesia, which are an undesirable effect of treatment with the standard drug levodopa.

Dr Rylander has studied two different systems in the brain that are believed to play an important role in the development of the side effects – glutamate and serotonin. An overactivation of glutamate signals, caused by treatment with levodopa, probably contributes to the development of dyskinesia. Daniella Rylander’s research focuses on blocking this undesirable overactivation.

“The receptor cells have different receptors on their surface where the glutamate is taken in to activate the cell. It is these receptors that I have tried to block. If we could find the right channel and subdue it then we could get more effective treatment with levodopa without any side effects. This has always been my goal”, says Daniella Rylander.

Tests in animal models, including rats, have shown very good results for the new method. A drug that blocks glutamate overactivation via the glutamate receptor ‘mGluR5’ was used in the study. This has previously been tested on humans and so provides a head start in the time-consuming clinical trials required before a new drug can be introduced.

Serotonin also plays an important role in the development of dyskinesia in Parkinson’s disease.

“We have now shown for the first time that individuals who have a particularly large amount of a certain type of fibre on their serotonin cells are also at greater risk of being affected by dyskinesia after levodopa treatment”, says Daniella Rylander.

The new finding of a clear pathological change in the serotonin system can now be utilised to better tailor the individual treatment of patients with Parkinson’s disease.

Daniella Rylander, who is part of the Basal Ganglia Pathophysiology Unit research group, defended her PhD thesis on 17 September 2010. The thesis is entitled Involvement of non-dopaminergic systems in L-DOPA-induced dyskinesia.

To contact Daniella Rylander: tel. +46 (0)46 222 36 19, Daniella.Rylander@med.lu.se

Pressofficer Megan Grindlay; +46-46 222 7308; megan.grindlay@fie.lu.se

Megan Grindlay | idw
Further information:
http://www.lunduniversity.lu.se/o.o.i.s?id=12683&postid=1659459
http://www.med.lu.se/english/expmed/research/basal_ganglia_pathophysiology

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>