Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Discovers New TB Pathogen

01.10.2010
Kathleen Alexander, associate professor of wildlife in Virginia Tech’s College of Natural Resources and Environment, has discovered a novel tuberculosis (TB) species in the Mycobacterium tuberculosis complex, a group of pathogens that have adapted by using mammals as hosts. It has been nearly two decades since a new organism was identified in this group; the majority were discovered in the early and mid 20th century.

Tuberculosis is presently the leading cause of death from infectious disease, infecting more than a third of the world’s population.

Alexander discovered that banded mongoose — a species common in central and eastern Africa — that were living closely with humans in northern Botswana were dying from a mysterious, tuberculosis-like disease. She and colleagues have now identified the pathogen as M. mungi sp. nov., a previously unidentified bacteria species from the Mycobacterium tuberculosis complex.

A pathogen is any living agent causing disease, including bacteria, viruses, fungi, yeast, and certain insect larval stages.

“This pathogen behaves very differently from the other tuberculosis infections in the complex and offers us a great opportunity to learn what drives tuberculosis evolution and ecology, providing possible insight into the control of this important group of pathogens,” Alexander pointed out.

Tuberculosis normally manifests as a respiratory disease and is spread through breathing the bacteria into the lungs, but M. mungi behaves in a completely different way. The infection appears to be associated with environmental exposure and movement of the pathogen into the banded mongoose host through the animal’s nose, possibly through abrasions on the surface of the nose that might result from feeding activity.

Unlike other species of tuberculosis, which typically present as a chronic disease, M. mungi usually kills infected banded mongoose within two to three months after symptoms develop, with outbreaks occurring in a largely seasonal pattern.

M. mungi threatens the survival of smaller social groups or troops of banded mongoose in the study area. The source of infection and the full host range of this pathogen are areas of active research at Alexander’s long-term study site in Botswana.

“Banded mongoose are able to live closely with people in disturbed environments as well as with other wildlife species in pristine environments,” Alexander noted. “Since the majority of pathogens emerge in wildlife species, this study system offers a critical opportunity for us to begin to understand how our modifications to the environment and interactions with wildlife influence how new diseases may emerge.”

The article about the emergence of M. mungi, “Novel Mycobacterium tuberculosis Complex Pathogen, M. mungi,” by Alexander and Pete N. Laver, of Virginia Tech and the Centre for Conservation of African Resources: Animals, Communities and Land Use, Kasane, Botswana; Anita L. Michel of the ARC-Onderstepoort Veterinary Institute, Pretoria, South Africa; Mark Williams of University of Pretoria; and Paul D. van Helden, Robin M. Warren, and Nicolaas C. Gey van Pittius of Stellenbosch University, Tygerberg, South Africa, has been published in the August 2010 issue of the journal Emerging Infectious Diseases (http://www.cdc.gov/eid/content/16/8/1296.htm ). Alexander plans to continue investigating this new pathogen species, as there is still much to learn about its ecology, transmission dynamics, and potential threats to human and wildlife health.

Currently, Alexander and her student research associates are intensively studying the behavior and ecology of banded mongoose and this new tuberculosis pathogen across both urban and protected area environments in her study site in Botswana. In addition, Alexander and her colleagues from Stellenbosch University in South Africa are studying the pathogen’s molecular characteristics and using molecular tools to identify transmission dynamics. She is also evaluating samples from humans, other animals, and the environment in the study area as she searches for the pathogen’s source.

“This project is like a great mystery novel because there is so much we don’t know yet, but we’ll find out,” Alexander said.

Lynn Davis | Newswise Science News
Further information:
http://www.vt.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>