Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Discovers New TB Pathogen

01.10.2010
Kathleen Alexander, associate professor of wildlife in Virginia Tech’s College of Natural Resources and Environment, has discovered a novel tuberculosis (TB) species in the Mycobacterium tuberculosis complex, a group of pathogens that have adapted by using mammals as hosts. It has been nearly two decades since a new organism was identified in this group; the majority were discovered in the early and mid 20th century.

Tuberculosis is presently the leading cause of death from infectious disease, infecting more than a third of the world’s population.

Alexander discovered that banded mongoose — a species common in central and eastern Africa — that were living closely with humans in northern Botswana were dying from a mysterious, tuberculosis-like disease. She and colleagues have now identified the pathogen as M. mungi sp. nov., a previously unidentified bacteria species from the Mycobacterium tuberculosis complex.

A pathogen is any living agent causing disease, including bacteria, viruses, fungi, yeast, and certain insect larval stages.

“This pathogen behaves very differently from the other tuberculosis infections in the complex and offers us a great opportunity to learn what drives tuberculosis evolution and ecology, providing possible insight into the control of this important group of pathogens,” Alexander pointed out.

Tuberculosis normally manifests as a respiratory disease and is spread through breathing the bacteria into the lungs, but M. mungi behaves in a completely different way. The infection appears to be associated with environmental exposure and movement of the pathogen into the banded mongoose host through the animal’s nose, possibly through abrasions on the surface of the nose that might result from feeding activity.

Unlike other species of tuberculosis, which typically present as a chronic disease, M. mungi usually kills infected banded mongoose within two to three months after symptoms develop, with outbreaks occurring in a largely seasonal pattern.

M. mungi threatens the survival of smaller social groups or troops of banded mongoose in the study area. The source of infection and the full host range of this pathogen are areas of active research at Alexander’s long-term study site in Botswana.

“Banded mongoose are able to live closely with people in disturbed environments as well as with other wildlife species in pristine environments,” Alexander noted. “Since the majority of pathogens emerge in wildlife species, this study system offers a critical opportunity for us to begin to understand how our modifications to the environment and interactions with wildlife influence how new diseases may emerge.”

The article about the emergence of M. mungi, “Novel Mycobacterium tuberculosis Complex Pathogen, M. mungi,” by Alexander and Pete N. Laver, of Virginia Tech and the Centre for Conservation of African Resources: Animals, Communities and Land Use, Kasane, Botswana; Anita L. Michel of the ARC-Onderstepoort Veterinary Institute, Pretoria, South Africa; Mark Williams of University of Pretoria; and Paul D. van Helden, Robin M. Warren, and Nicolaas C. Gey van Pittius of Stellenbosch University, Tygerberg, South Africa, has been published in the August 2010 issue of the journal Emerging Infectious Diseases (http://www.cdc.gov/eid/content/16/8/1296.htm ). Alexander plans to continue investigating this new pathogen species, as there is still much to learn about its ecology, transmission dynamics, and potential threats to human and wildlife health.

Currently, Alexander and her student research associates are intensively studying the behavior and ecology of banded mongoose and this new tuberculosis pathogen across both urban and protected area environments in her study site in Botswana. In addition, Alexander and her colleagues from Stellenbosch University in South Africa are studying the pathogen’s molecular characteristics and using molecular tools to identify transmission dynamics. She is also evaluating samples from humans, other animals, and the environment in the study area as she searches for the pathogen’s source.

“This project is like a great mystery novel because there is so much we don’t know yet, but we’ll find out,” Alexander said.

Lynn Davis | Newswise Science News
Further information:
http://www.vt.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>