Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor discovers way to slow the growth of malignant melanoma

09.07.2010
New Queen's University research has shown that the growth of melanoma, one of the most deadly forms of skin cancer, can be slowed when a little known gene called MicroRNA 193b is added.

Victor Tron, head of pathology and molecular medicine, focused on miR-193b when he discovered that it was deficient in melanoma tumors and because there were very few studies done about the gene. The miRNA-193b gene is found in people's DNA and was unknown until 10 years ago.

"Our experiment was a bit of a fishing expedition in the beginning. We thought 193b might be important but the fact we got such a tremendous reaction – the melanoma really slowed down when we added 193b – was really startling," says Dr. Tron, who worked with eight other Queen's researchers. "It's a totally new discovery."

In experiments, increased levels of miR-193b increased in melanoma cells led to lower levels of a well-known protein called cyclin D1, and decreased melanoma cell growth.

Lab experiments with tissue samples proved that miR-193b plays a role in the melanoma process. Further studies will be needed to find out what causes miR-193b levels to go up and down.

"This is the first step in a long road towards finding a melanoma cure," says Professor Tron.

Melanoma is one of the least common forms of skin cancer, yet causes 75 per cent of skin cancer deaths.

The study was recently published in the American Journal of Pathology. Pathology researchers Harriet Feilotter, Genevieve Pare, Xiao Zhang, Joshua Pemberton, Cherif Grady, Dulcie Lai and Xiaolong Yang and graduate student Jiamin Chen were also on the research team.

Queen's University is located in Kingston, Ontario Canada.

Michael Onesi | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>