Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor discovers way to slow the growth of malignant melanoma

09.07.2010
New Queen's University research has shown that the growth of melanoma, one of the most deadly forms of skin cancer, can be slowed when a little known gene called MicroRNA 193b is added.

Victor Tron, head of pathology and molecular medicine, focused on miR-193b when he discovered that it was deficient in melanoma tumors and because there were very few studies done about the gene. The miRNA-193b gene is found in people's DNA and was unknown until 10 years ago.

"Our experiment was a bit of a fishing expedition in the beginning. We thought 193b might be important but the fact we got such a tremendous reaction – the melanoma really slowed down when we added 193b – was really startling," says Dr. Tron, who worked with eight other Queen's researchers. "It's a totally new discovery."

In experiments, increased levels of miR-193b increased in melanoma cells led to lower levels of a well-known protein called cyclin D1, and decreased melanoma cell growth.

Lab experiments with tissue samples proved that miR-193b plays a role in the melanoma process. Further studies will be needed to find out what causes miR-193b levels to go up and down.

"This is the first step in a long road towards finding a melanoma cure," says Professor Tron.

Melanoma is one of the least common forms of skin cancer, yet causes 75 per cent of skin cancer deaths.

The study was recently published in the American Journal of Pathology. Pathology researchers Harriet Feilotter, Genevieve Pare, Xiao Zhang, Joshua Pemberton, Cherif Grady, Dulcie Lai and Xiaolong Yang and graduate student Jiamin Chen were also on the research team.

Queen's University is located in Kingston, Ontario Canada.

Michael Onesi | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>