Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor's Model-Based Approach Helps Minimize Treatment Failure for HIV Patients

16.12.2011
Effective long-term treatment for patients living with HIV is complicated. Drug resistance is the leading cause of treatment failure and the development of new strains of the virus is common.

Ryan Zurakowski, assistant professor of electrical and computer engineering at the University of Delaware, has developed a treatment method to reduce the risk of future failures in patients who have already experienced failure with their HIV treatment protocol.

Patients are often treated with three-drug regimens that are highly effective at suppressing the virus in the long term, however, some patients become resistant to one or all three components of their regimen.

When this happens, patients must switch to a new regimen.

Zurakowski and his group are developing model-based approaches that minimize the risk of treatment failures for HIV patients who are switching therapies by considering both the contributions of viral load to the probability of failure.

Viral load measures the status of a patient’s infection level.

People with a high HIV viral load have a significantly higher chance of carrying a strain of HIV that will be resistant to subsequent medication regimens. This resistance can severely limit a patient’s treatment options.

“We are developing methods that would allow us to reduce the number of viral load measurements required without significantly decreasing the achieved reduction in risk,” said Zurakowski. “We are also developing ways to use the existing databases of HIV drug resistance mutations in order to choose the best drug combinations.”

Early results indicate that when a treatment fails, steps should be taken to reduce the viral load before switching to a new regimen. Starting treatment at a lower level of infection will significantly lower the chances of developing resistance.

For those who experience multiple failed therapies, Zurakowski also found that constructing a temporary "mix and match" regimen from previously failed combinations may minimize the risk of additional treatment failure.

If successful, Zurakowski’s research could help clinicians design and customize optimal treatment plans for transitioning patients whose antiviral regimen has failed to an alternate set of medications.

“The mathematical tools which are traditionally applied to aerospace, robotics and electrical design problems are equally applicable to problems of medical modeling and treatment planning,” Zurakowski explained.

Zurakowski’s research is documented in a paper entitled "Optimal Antiviral Switching to Minimize Resistance Risk in HIV Therapy." The paper was recently published in PLoS One, a peer-reviewed online science publication of the Public Library of Science. It has also been featured in the AIDS Beacon, an online publication provided by Light Knowledge Resources, an independent Internet publishing company based in Princeton, N.J.

About the researcher

Zurakowski joined UD in 2006. In addition to his faculty role in electrical and computer engineering, he is also affiliated with the Delaware Biotechnology Institute and holds appointments within the Department of Mathematical Sciences and the Biomedical Engineering program. His research centers on nonlinear control theory and applications, specifically in mathematical biology and medicine.

He received his doctorate in electrical and computer engineering from the University of California, Santa Barbara in 2004. Prior to joining UD, he was a postdoctoral researcher in the Department of Ecology and Evolutionary Biology at the University of California, Irvine.

Andrea Boyle | Newswise Science News
Further information:
http://www.udel.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>