Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probiotic protects intestine from radiation injury

17.11.2011
Scientists at Washington University School of Medicine in St. Louis have shown that taking a probiotic before radiation therapy can protect the intestine from damage — at least in mice.

The new study suggests that taking a probiotic also may help cancer patients avoid intestinal injury, a common problem in those receiving radiation therapy for abdominal cancers. The research is published online in the journal Gut.

Radiation therapy often is used to treat prostate, cervical, bladder, endometrial and other abdominal cancers. But the therapy can kill both cancer cells and healthy ones, leading to severe bouts of diarrhea if the lining of the intestine gets damaged.

"For many patients, this means radiation therapy must be discontinued, or the radiation dose reduced, while the intestine heals," says senior investigator William F. Stenson, MD, the Dr. Nicholas V. Costrini Professor in Gastroenterology & Inflammatory Bowel Disease at Washington University. "Probiotics may provide a way to protect the lining of the small intestine from some of that damage."

Stenson has been searching for ways to repair and protect healthy tissue from radiation. This study showed that the probiotic bacteria Lactobacillus rhamnosus GG (LGG), among other Lactobacillus probiotic strains, protected the lining of the small intestine in mice receiving radiation.

"The lining of the intestine is only one cell-layer thick," Stenson says. "This layer of epithelial cells separates the rest of the body from what's inside the intestine. If the epithelium breaks down as the result of radiation, the bacteria that normally reside in the intestine can be released, travel through the body and cause serious problems such as sepsis."

The researchers found that the probiotic was effective only if given to mice before radiation exposure. If the mice received the probiotic after damage to the intestinal lining had occurred, the LGG treatment could not repair it in this model.

Because the probiotic protected intestinal cells in mice exposed, the investigators believe it may be time to study probiotic use in patients receiving radiation therapy for abdominal cancers.

"In earlier human studies, patients usually took a probiotic after diarrhea developed when the cells in the intestine already were injured," says first author Matthew A. Ciorba, MD, assistant professor of medicine in the Division of Gastroenterology. "Our study suggests we should give the probiotic prior to the onset of symptoms, or even before the initiation of radiation because, at least in this scenario, the key function of the probiotic seems to be preventing damage, rather than facilitating repair."

The investigators sought to evaluate LGG's protective effects in a way that would leave little doubt about whether it was preventing injury, and if so, how it was protecting the cells that line the intestine.

"Some human studies have looked at the possibility that probiotics might reduce diarrhea, but most of those studies have not been quite as rigorous as we would like, and the mechanism by which the probiotics might work has not been addressed," Stenson says.

Previously, Stenson and his colleagues demonstrated that a molecular pathway involving prostaglandins and cyclooxygenase-2 (COX-2), key components in inflammation, could protect cells in the small intestine by preventing the programmed cell death, or apoptosis, that occurs in response to radiation.

They gave measured doses of LGG to mice, directly delivering the live bacteria to the stomach. They found it protected only mice that could make COX-2. In mutant mice unable to manufacture COX-2, the radiation destroyed epithelial cells in the intestine, just as it did in mice that didn't receive the probiotic.

"In the large intestine, or colon, cells that make COX-2 migrate to sites of injury and assist in repair," Ciorba says. "In this study, we evaluated that response in the small intestine, and we found that COX-2-expressing cells could migrate from the lining to the area of the intestine, called the crypt, where new epithelial cells are made, and we believe this mechanism is key to the protective effect we observed."

If human studies are launched, Ciorba says one bit of encouraging news is that the doses of probiotic given to mice were not exceptionally large, and their intestines were protected. So people wouldn't need mega-doses of the probiotic to get protection.

"The bacteria we use is similar to what's found in yogurt or in commercially available probiotics," he says. "So theoretically, there shouldn't be risk associated with this preventative treatment strategy any more than there would be in a patient with abdominal cancer eating yogurt."

In addition, he notes, future research is focused on isolating the particular radio-protective factor produced by the probiotic. When that is identified, a therapeutic could be developed to harness the probiotic benefit without using the live bacteria.

Ciorba MA, Riehl TE, Rao SM, Moon C, Ee X, Nava GM, Walker MS, Marinshaw JM, Stappenbeck TS, Stenson WF. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR2/cyclo-osygenase-2-dependent manner. Gut, available online at http://gut.bmj.com/content/early/2011/10/24/gutjnl-2011-300367.long

Funding for this research comes from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (NIH), the Crohn's and Colitis Foundation of America and a Global Probiotics Council Young Investigator Award given to Matthew A. Ciorba, MD.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>