Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probiotic protects intestine from radiation injury

17.11.2011
Scientists at Washington University School of Medicine in St. Louis have shown that taking a probiotic before radiation therapy can protect the intestine from damage — at least in mice.

The new study suggests that taking a probiotic also may help cancer patients avoid intestinal injury, a common problem in those receiving radiation therapy for abdominal cancers. The research is published online in the journal Gut.

Radiation therapy often is used to treat prostate, cervical, bladder, endometrial and other abdominal cancers. But the therapy can kill both cancer cells and healthy ones, leading to severe bouts of diarrhea if the lining of the intestine gets damaged.

"For many patients, this means radiation therapy must be discontinued, or the radiation dose reduced, while the intestine heals," says senior investigator William F. Stenson, MD, the Dr. Nicholas V. Costrini Professor in Gastroenterology & Inflammatory Bowel Disease at Washington University. "Probiotics may provide a way to protect the lining of the small intestine from some of that damage."

Stenson has been searching for ways to repair and protect healthy tissue from radiation. This study showed that the probiotic bacteria Lactobacillus rhamnosus GG (LGG), among other Lactobacillus probiotic strains, protected the lining of the small intestine in mice receiving radiation.

"The lining of the intestine is only one cell-layer thick," Stenson says. "This layer of epithelial cells separates the rest of the body from what's inside the intestine. If the epithelium breaks down as the result of radiation, the bacteria that normally reside in the intestine can be released, travel through the body and cause serious problems such as sepsis."

The researchers found that the probiotic was effective only if given to mice before radiation exposure. If the mice received the probiotic after damage to the intestinal lining had occurred, the LGG treatment could not repair it in this model.

Because the probiotic protected intestinal cells in mice exposed, the investigators believe it may be time to study probiotic use in patients receiving radiation therapy for abdominal cancers.

"In earlier human studies, patients usually took a probiotic after diarrhea developed when the cells in the intestine already were injured," says first author Matthew A. Ciorba, MD, assistant professor of medicine in the Division of Gastroenterology. "Our study suggests we should give the probiotic prior to the onset of symptoms, or even before the initiation of radiation because, at least in this scenario, the key function of the probiotic seems to be preventing damage, rather than facilitating repair."

The investigators sought to evaluate LGG's protective effects in a way that would leave little doubt about whether it was preventing injury, and if so, how it was protecting the cells that line the intestine.

"Some human studies have looked at the possibility that probiotics might reduce diarrhea, but most of those studies have not been quite as rigorous as we would like, and the mechanism by which the probiotics might work has not been addressed," Stenson says.

Previously, Stenson and his colleagues demonstrated that a molecular pathway involving prostaglandins and cyclooxygenase-2 (COX-2), key components in inflammation, could protect cells in the small intestine by preventing the programmed cell death, or apoptosis, that occurs in response to radiation.

They gave measured doses of LGG to mice, directly delivering the live bacteria to the stomach. They found it protected only mice that could make COX-2. In mutant mice unable to manufacture COX-2, the radiation destroyed epithelial cells in the intestine, just as it did in mice that didn't receive the probiotic.

"In the large intestine, or colon, cells that make COX-2 migrate to sites of injury and assist in repair," Ciorba says. "In this study, we evaluated that response in the small intestine, and we found that COX-2-expressing cells could migrate from the lining to the area of the intestine, called the crypt, where new epithelial cells are made, and we believe this mechanism is key to the protective effect we observed."

If human studies are launched, Ciorba says one bit of encouraging news is that the doses of probiotic given to mice were not exceptionally large, and their intestines were protected. So people wouldn't need mega-doses of the probiotic to get protection.

"The bacteria we use is similar to what's found in yogurt or in commercially available probiotics," he says. "So theoretically, there shouldn't be risk associated with this preventative treatment strategy any more than there would be in a patient with abdominal cancer eating yogurt."

In addition, he notes, future research is focused on isolating the particular radio-protective factor produced by the probiotic. When that is identified, a therapeutic could be developed to harness the probiotic benefit without using the live bacteria.

Ciorba MA, Riehl TE, Rao SM, Moon C, Ee X, Nava GM, Walker MS, Marinshaw JM, Stappenbeck TS, Stenson WF. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR2/cyclo-osygenase-2-dependent manner. Gut, available online at http://gut.bmj.com/content/early/2011/10/24/gutjnl-2011-300367.long

Funding for this research comes from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (NIH), the Crohn's and Colitis Foundation of America and a Global Probiotics Council Young Investigator Award given to Matthew A. Ciorba, MD.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>