Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Preventing ear infections in the future: Delivering vaccine through the skin

An experimental vaccine applied the surface of the skin appears to protect against certain types of ear infections. Scientists from the Research Institute at Nationwide Children's Hospital in Columbus, Ohio, report their findings today at the 109th General Meeting of the American Society for Microbiology in Philadelphia.

"Our data are the first to show that transcutaneous immunization is an effective way to prevent experimental ear infections and lays the foundation for an effective, yet simple, inexpensive – and potentially transformative – way to deliver vaccines," says Laura Novotny, one of the study researchers.

Nontypeable Haemophilus influenzae (NTHi) is one of the three main bacterial causes of otitis media (OM), an infection or inflammation of the middle ear. OM is one of the most significant health problems for children in the United States, costing approximately $5 billion annually. It is estimated that 83% of all children will experience at least one ear infection prior to 3 years of age.

Currently infections are managed with antibiotics; however, the emergence of antibiotic-resistant microorganisms is of concern. Surgery to insert tubes through the tympanic membrane relieves painful symptoms, but the procedure is invasive and requires the child to be under general anesthesia. Thus, it is necessary to develop different ways to treat or preferably prevent this disease.

"We have designed several vaccine candidates which target proteins on the outer surface of this bacterium. Previous work in our lab showed that after immunization by injection, each of the three vaccine candidates prevented experimental ear infections caused by NTHi. In this study, we now wanted to test an alternative but potentially equally effective method to deliver a vaccine," says Novotny.

The method, known as transcutaneous immunization, involved placing a droplet of each vaccine onto the ear and rubbing it into the skin.

In this study, four groups of chinchillas were immunized with one of the three vaccine candidates. A fourth group received a placebo. Each vaccine was placed on the ears of chinchillas once a week for three weeks. All animals were then inoculated with NTHi through the nose and directly into the middle ears. Animals that received the vaccines were able to very rapidly reduce, or completely eliminate NTHi from the nose and ears, but animals that received a placebo did not.

This study was performed by Laura A. Novotny of Dr. Lauren O. Bakaletz's laboratory in the Center for Microbial Pathogenesis at The Research Institute at Nationwide Children's Hospital in Columbus, OH and in collaboration with Dr. John D. Clements, Department of Microbiology and Immunology, Tulane University, New Orleans, LA. Research was made possible by funding from the NIDCD/NIH R01 03915 & 007464. Data were presented at the 109th General Meeting of the American Society for Microbiology in Philadelphia, PA on May 21, 2009.

More information on this and other presentations can be found online in the 109th ASM General Meeting Press Kit at or by contacting Jim Sliwa ( or 202.942.9297) in the ASM Office of Communications. Follow media events at the meeting via Twitter at

The American Society for Microbiology, headquartered in Washington, D.C., is the largest single life science association, with 42,000 members worldwide. Its members work in educational, research, industrial, and government settings on issues such as the environment, the prevention and treatment of infectious diseases, laboratory and diagnostic medicine, and food and water safety. The ASM's mission is to gain a better understanding of basic life processes and to promote the application of this knowledge for improved health and economic and environmental well-being.

Jim Sliwa | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>