Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing ear infections in the future: Delivering vaccine through the skin

26.05.2009
An experimental vaccine applied the surface of the skin appears to protect against certain types of ear infections. Scientists from the Research Institute at Nationwide Children's Hospital in Columbus, Ohio, report their findings today at the 109th General Meeting of the American Society for Microbiology in Philadelphia.

"Our data are the first to show that transcutaneous immunization is an effective way to prevent experimental ear infections and lays the foundation for an effective, yet simple, inexpensive – and potentially transformative – way to deliver vaccines," says Laura Novotny, one of the study researchers.

Nontypeable Haemophilus influenzae (NTHi) is one of the three main bacterial causes of otitis media (OM), an infection or inflammation of the middle ear. OM is one of the most significant health problems for children in the United States, costing approximately $5 billion annually. It is estimated that 83% of all children will experience at least one ear infection prior to 3 years of age.

Currently infections are managed with antibiotics; however, the emergence of antibiotic-resistant microorganisms is of concern. Surgery to insert tubes through the tympanic membrane relieves painful symptoms, but the procedure is invasive and requires the child to be under general anesthesia. Thus, it is necessary to develop different ways to treat or preferably prevent this disease.

"We have designed several vaccine candidates which target proteins on the outer surface of this bacterium. Previous work in our lab showed that after immunization by injection, each of the three vaccine candidates prevented experimental ear infections caused by NTHi. In this study, we now wanted to test an alternative but potentially equally effective method to deliver a vaccine," says Novotny.

The method, known as transcutaneous immunization, involved placing a droplet of each vaccine onto the ear and rubbing it into the skin.

In this study, four groups of chinchillas were immunized with one of the three vaccine candidates. A fourth group received a placebo. Each vaccine was placed on the ears of chinchillas once a week for three weeks. All animals were then inoculated with NTHi through the nose and directly into the middle ears. Animals that received the vaccines were able to very rapidly reduce, or completely eliminate NTHi from the nose and ears, but animals that received a placebo did not.

This study was performed by Laura A. Novotny of Dr. Lauren O. Bakaletz's laboratory in the Center for Microbial Pathogenesis at The Research Institute at Nationwide Children's Hospital in Columbus, OH and in collaboration with Dr. John D. Clements, Department of Microbiology and Immunology, Tulane University, New Orleans, LA. Research was made possible by funding from the NIDCD/NIH R01 03915 & 007464. Data were presented at the 109th General Meeting of the American Society for Microbiology in Philadelphia, PA on May 21, 2009.

More information on this and other presentations can be found online in the 109th ASM General Meeting Press Kit at http://tinyurl.com/asmnewsroom or by contacting Jim Sliwa ( jsliwa@asmusa.org or 202.942.9297) in the ASM Office of Communications. Follow media events at the meeting via Twitter at http://www.twitter.com/ASMNewsroom.

The American Society for Microbiology, headquartered in Washington, D.C., is the largest single life science association, with 42,000 members worldwide. Its members work in educational, research, industrial, and government settings on issues such as the environment, the prevention and treatment of infectious diseases, laboratory and diagnostic medicine, and food and water safety. The ASM's mission is to gain a better understanding of basic life processes and to promote the application of this knowledge for improved health and economic and environmental well-being.

Jim Sliwa | EurekAlert!
Further information:
http://www.asm.org

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>