Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing diabetes damage: Zinc's effects on a kinky, two-faced cohort

01.07.2011
In type 2 diabetes, a protein called amylin forms dense clumps that shut down insulin-producing cells, wreaking havoc on the control of blood sugar. But zinc has a knack for preventing amylin from misbehaving.

Recent research at the University of Michigan offers new details about how zinc performs this "security guard" function. The findings appear in the July 8 issue of the Journal of Molecular Biology.

Amylin is something of a two-faced character. In healthy people who have normal levels of zinc in the insulin-producing islet cells of the pancreas, amylin actually pitches in to help with blood sugar regulation, says Ayyalusamy Ramamoorthy, a U-M professor of chemistry and of biophysics in the College of Literature, Science, and the Arts. In fact, an analog of amylin called Symlin is used in conjunction with insulin to manage blood sugar levels in diabetics.

This good behavior on amylin's part comes about because zinc acts like a security guard at a rock concert, whose job is keeping fans from turning troublesome and destructive. In molecular terms, zinc prevents amylin—also known as Islet Amyloid Polypeptide (IAPP)—from forming harmful clumps similar to those found in Alzheimer's, Parkinson's, Huntington's and various other degenerative diseases.

But in a zinc-starved cellular environment of someone with type 2 diabetes, amylin has no watchful guard to rein it in. It's free to clump together with other amylin molecules in the molecular equivalent of a gang.

The clumping ultimately leads to the formation of ribbon-like structures called fibrils, and because fibril formation has been linked to a number of human diseases, it was long assumed that fibrils themselves were toxic. But accumulating evidence now suggests that the actual culprits may be shorter snippets that assemble in the process of forming full-length fibrils. For this reason, it's important to understand the whole aggregation process, not just the structure of the final fibril.

Ramamoorthy and colleagues are trying to better understand exactly how zinc interacts with amylin, in hopes of finding ways of treating or preventing type 2 diabetes and other diseases associated with aging. In earlier work, they showed that when zinc binds to amylin, at a point near the middle of the amylin molecule, the amylin molecule kinks, which interferes with the formation of toxic clumps. In the current work, they show that the binding of zinc in the middle makes one end of the amylin molecule, called the N-terminus, become more orderly.

"This is significant, because the N-terminus is very important in clump formation and amylin toxicity," Ramamoorthy said.

In addition, the researchers found that before amylin can begin forming fibrils, zinc must be rousted from its nesting place. This eviction is costly in energetic terms, and the sheer expense of it discourages fibril formation. And because a single zinc molecule can bind to several amylin molecules, it ties up the amylin in assemblages that, unlike certain other aggregations, are not intermediates in the pathway that leads to fibril formation.

However zinc, like amylin, has a dual nature. At conditions similar to those outside islet cells, where even a tiny amount of amylin aggregates in the blink of an eye, zinc inhibits fibril formation. But in conditions resembling the inside of the cell, the inhibitory effect begins to wane and other factors, like insulin, take on zinc's security guard duties. Ramamoorthy's group found that this happens because amylin has not one, but two binding sites for zinc. Zinc prefers to bind at the first site—the one in the middle of the amylin molecule, where its binding discourages fibril formation. But when there's too much zinc around, all the binding sites in the middle positions are occupied and zinc must attach to amylin at the second site, which counteracts the effect of the first site. This may explain why decreased levels of insulin—the backup security guard—inside islet cells of diabetics result in islet cell death.

The experiments described in the Journal of Molecular Biology paper were all done in an artificial environment, not a living organism where zinc levels constantly fluctuate. In future experiments, Ramamoorthy hopes to more closely approximate natural conditions in order to better understand how amylin interacts with islet cells and what triggers its toxicity toward the cells. The results of these studies will facilitate the development of metal-based therapies for type 2 diabetes, similar to the promising metal-based drugs developed for Alzheimer's and other neurodegenerative diseases, Ramamoorthy said.

Ramamoorthy's coauthors in the paper are undergraduate student Samer Salamekh, postdoctoral fellows Jeffrey Brender and Suk-Joon Hyung, former graduate student Ravi Prakash Reddy Nanga, NMR specialist Subramanian Vivekanandan and assistant professor of chemistry Brandon Ruotolo

The National Institutes of Health provided funding for the research.

Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>