Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing chronic pain with stress management

25.02.2013
For chronic pain sufferers, such as people who develop back pain after a car accident, avoiding the harmful effects of stress may be key to managing their condition.

This is particularly important for people with a smaller-than-average hippocampus, as these individuals seem to be particularly vulnerable to stress.

These are the findings of a study by Dr. Pierre Rainville, PhD in Neuropsychology, Researcher at the Research Centre of the Institut universitaire de gériatrie de Montréal (IUGM) and Professor in the Faculty of Dentistry at Université de Montréal, along with Étienne Vachon-Presseau, a PhD student in Neuropsychology. The study appeared in Brain, a journal published by Oxford University Press.

"Cortisol, a hormone produced by the adrenal glands, is sometimes called the 'stress hormone' as it is activated in reaction to stress. Our study shows that a small hippocampal volume is associated with higher cortisol levels, which lead to increased vulnerability to pain and could increase the risk of developing pain chronicity," explained Étienne Vachon-Presseau.

As Dr. Pierre Rainville described, "Our research sheds more light on the neurobiological mechanisms of this important relationship between stress and pain. Whether the result of an accident, illness or surgery, pain is often associated with high levels of stress Our findings are useful in that they open up avenues for people who suffer from pain to find treatments that may decrease its impact and perhaps even prevent chronicity. To complement their medical treatment, pain sufferers can also work on their stress management and fear of pain by getting help from a psychologist and trying relaxation or meditation techniques."

Research summary

This study included 16 patients with chronic back pain and a control group of 18 healthy subjects. The goal was to analyze the relationships between four factors: 1) cortisol levels, which were determined with saliva samples; 2) the assessment of clinical pain reported by patients prior to their brain scan (self-perception of pain); 3) hippocampal volumes measured with anatomical magnetic resonance imaging (MRI); and 4) brain activations assessed with functional MRI (fMRI) following thermal pain stimulations. The results showed that patients with chronic pain generally have higher cortisol levels than healthy individuals.

Data analysis revealed that patients with a smaller hippocampus have higher cortisol levels and stronger responses to acute pain in a brain region involved in anticipatory anxiety in relation to pain. The response of the brain to the painful procedure during the scan partly reflected the intensity of the patient's current clinical pain condition. These findings support the chronic pain vulnerability model in which people with a smaller hippocampus develop a stronger stress response, which in turn increases their pain and perhaps their risk of suffering from chronic pain. This study also supports stress management interventions as a treatment option for chronic pain sufferers.

About the lead authors

Dr. Pierre Rainville, PhD in Neuropsychology, Researcher at the Research Centre of the IUGM
Director of the Laboratory of the Neuropsychophysiology of Pain
Full Professor, Department of Stomatology, Faculty of Dentistry, Université de Montréal

Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal

Étienne Vachon-Presseau, PhD student in Neuropsychology, Department of Psychology, Université de Montréal

Reference

Étienne Vachon-Presseau, Mathieu Roy, Marc-Olivier Martel, Etienne Caron, Marie-France Marin, Jeni Chen, Geneviève Albouy, Isabelle Plante, Michael J. Sullivan, Sonia J. Lupien et Pierre Rainville. "The stress model of chronic pain: evidence from basal cortisol and hippocampal structure and function in humans", February 18, 2013.

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Hot vibrating gases under the electron spotlight

12.12.2017 | Life Sciences

New silicon structure opens the gate to quantum computers

12.12.2017 | Information Technology

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>