Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Premium car research & cow dung point to new high tech disease diagnosis

14.10.2009
Researchers at the University of Warwick have taken high tech gas sensors normally used to test components for premium cars and applied the same techniques to human blood, human urine, and even cow dung samples from local cow pats.

The results could lead to a new high tech medical tool that could provide a fast diagnosis for some of the most difficult gastrointestinal illnesses and metabolic diseases.

Fermentation of undigested foods in the colon by its resident bacteria affects not only colonic health (protection against inflammation and tumour formation) but also influences metabolic health. Studying fermentation and the volatile organic compounds (VOCs) it generates directly is difficult due to lack of easy access to the colon.

Researchers from the University of Warwick’s innovation specialists WMG have devised a solution to this problem using a special suite of equipment normally used to test car components for premium cars. The equipment heats car material samples to see what range of “volatile chemicals” (essentially gases) are emitted from car components to understand what implications that would have for air quality in the car and how it might affect the future recycling of the component. The car researchers wondered if this high tech equipment for studying volatile chemicals in premium cars would also assist their medical colleagues seeking to study volatile organic compounds from the human colon.

The University of Warwick WMG researchers Dr Mark Pharaoh and Dr Geraint J. Williams invited medical consultant Dr Ramesh P Arasaradnam (a Clinician Scientist and Lecturer in Gastroenterology in Warwick Medical School and a Gastroenterologist at University Hospitals Coventry & Warwick) to work with them to advise on how they could test their equipment on organic matter. Professors Sudesh Kumar, Chuka Nwokolo and K D Bardhan, from Warwick Medical School, also joined the team.

The gas products of fermentation include various volatile organic compounds, the relative proportions of which may change in disease. The research team have coined the term ‘fermentome’ to describe the complex interplay between diet, symbiont bacteria and volatile gases The clinical researchers in the team believed that the research engineer’s equipment could help them study such a ‘fermentome’ which could then be used for diagnosis and disease characterisation. Measurement of VOCs through non-invasive methods could then have an important application as a hypothesis-generating tool and could even have clinical applications.

The joint clinician and engineering research team have now performed tests using the car analysis equipment on human blood, human urine, and even cow and horse dung harvested from the local area. The results so far suggest that the equipment could indeed be used to obtain a useful picture of the range of fermentation gases produced by this organic matter. Knowing what those mix of gases are could therefore provide a useful analogue understanding of what gastrointestinal illness or metabolic diseases are afflicting patient.

The team have just published that research in a paper entitled “Colonic fermentation – More than meets the nose” in the journal Med Hypotheses. The research team are now exploring funding options that would allow them to take this new technique into a larger scale studies including clinical trials.

Dr Mark Pharaoh said:

“These early results suggest that we could indeed use this automotive technology to give medical consultants a very precise understanding of the mix of gases being produced within the human gut. An understanding of the precise mix of gases is a very valuable clue to understanding any problem with the balance and mix of bacteria that are generating those gases.”

Dr Ramesh P Arasaradnam said:

“This is could be a vital new tool in the diagnosis of gastrointestinal as well as metabolic diseases. Gaining first hand information of what is going on in the gut would require very invasive procedures. Even simply culturing the bacteria from a patient’s urine or faeces takes a considerable amount of time. This technique could give medical consultants such as myself valuable information about what is causing a patient’s condition long before the data from a standard bacterial culture would be available.”

The research team are now exploring funding options that would allow them to take this new technique into a clinical trial

Note for Editors:

The research paper just published in "Medical Hypotheses "- doi:10.1016/j.mehy.2009.04.027 is entitled : “Colonic fermentation – More than meets the nose”. The researchers are: Dr Mark Pharaoh and Dr Geraint J. Williams from the University of Warwick (WMG); Dr Ramesh P Arasaradnam, Professor Sudesh Kumar and Professor C.U. Nwokolo from Warwick Medical School and University Hospitals Coventry & Warwick; Prof K D Bardhan from Warwick Medical School, University of Warwick and Rotherham General Hospital.

For further information contact:

Dr Mark Pharaoh, University of Warwick, WMG
Tel: +44 (0)24 76 523941
m.w.pharaoh@warwick.ac.uk
Ramesh P Arasaradnam., Clinician Scientist and Lecturer in Gastroenterology
Warwick Medical School, University of Warwick, and University Hospitals Coventry & Warwick Tel: 02476 966087

E mail: r.arasaradnam@warwick.ac.uk

Peter Dunn, Head of Communications,

University of Warwick Tel: +44 (0)24 76 523708
or mobile/cell +44(0)7767 655860 email: p.j.dunn@warwick.ac.uk

Peter Dunn | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>