Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Premium car research & cow dung point to new high tech disease diagnosis

14.10.2009
Researchers at the University of Warwick have taken high tech gas sensors normally used to test components for premium cars and applied the same techniques to human blood, human urine, and even cow dung samples from local cow pats.

The results could lead to a new high tech medical tool that could provide a fast diagnosis for some of the most difficult gastrointestinal illnesses and metabolic diseases.

Fermentation of undigested foods in the colon by its resident bacteria affects not only colonic health (protection against inflammation and tumour formation) but also influences metabolic health. Studying fermentation and the volatile organic compounds (VOCs) it generates directly is difficult due to lack of easy access to the colon.

Researchers from the University of Warwick’s innovation specialists WMG have devised a solution to this problem using a special suite of equipment normally used to test car components for premium cars. The equipment heats car material samples to see what range of “volatile chemicals” (essentially gases) are emitted from car components to understand what implications that would have for air quality in the car and how it might affect the future recycling of the component. The car researchers wondered if this high tech equipment for studying volatile chemicals in premium cars would also assist their medical colleagues seeking to study volatile organic compounds from the human colon.

The University of Warwick WMG researchers Dr Mark Pharaoh and Dr Geraint J. Williams invited medical consultant Dr Ramesh P Arasaradnam (a Clinician Scientist and Lecturer in Gastroenterology in Warwick Medical School and a Gastroenterologist at University Hospitals Coventry & Warwick) to work with them to advise on how they could test their equipment on organic matter. Professors Sudesh Kumar, Chuka Nwokolo and K D Bardhan, from Warwick Medical School, also joined the team.

The gas products of fermentation include various volatile organic compounds, the relative proportions of which may change in disease. The research team have coined the term ‘fermentome’ to describe the complex interplay between diet, symbiont bacteria and volatile gases The clinical researchers in the team believed that the research engineer’s equipment could help them study such a ‘fermentome’ which could then be used for diagnosis and disease characterisation. Measurement of VOCs through non-invasive methods could then have an important application as a hypothesis-generating tool and could even have clinical applications.

The joint clinician and engineering research team have now performed tests using the car analysis equipment on human blood, human urine, and even cow and horse dung harvested from the local area. The results so far suggest that the equipment could indeed be used to obtain a useful picture of the range of fermentation gases produced by this organic matter. Knowing what those mix of gases are could therefore provide a useful analogue understanding of what gastrointestinal illness or metabolic diseases are afflicting patient.

The team have just published that research in a paper entitled “Colonic fermentation – More than meets the nose” in the journal Med Hypotheses. The research team are now exploring funding options that would allow them to take this new technique into a larger scale studies including clinical trials.

Dr Mark Pharaoh said:

“These early results suggest that we could indeed use this automotive technology to give medical consultants a very precise understanding of the mix of gases being produced within the human gut. An understanding of the precise mix of gases is a very valuable clue to understanding any problem with the balance and mix of bacteria that are generating those gases.”

Dr Ramesh P Arasaradnam said:

“This is could be a vital new tool in the diagnosis of gastrointestinal as well as metabolic diseases. Gaining first hand information of what is going on in the gut would require very invasive procedures. Even simply culturing the bacteria from a patient’s urine or faeces takes a considerable amount of time. This technique could give medical consultants such as myself valuable information about what is causing a patient’s condition long before the data from a standard bacterial culture would be available.”

The research team are now exploring funding options that would allow them to take this new technique into a clinical trial

Note for Editors:

The research paper just published in "Medical Hypotheses "- doi:10.1016/j.mehy.2009.04.027 is entitled : “Colonic fermentation – More than meets the nose”. The researchers are: Dr Mark Pharaoh and Dr Geraint J. Williams from the University of Warwick (WMG); Dr Ramesh P Arasaradnam, Professor Sudesh Kumar and Professor C.U. Nwokolo from Warwick Medical School and University Hospitals Coventry & Warwick; Prof K D Bardhan from Warwick Medical School, University of Warwick and Rotherham General Hospital.

For further information contact:

Dr Mark Pharaoh, University of Warwick, WMG
Tel: +44 (0)24 76 523941
m.w.pharaoh@warwick.ac.uk
Ramesh P Arasaradnam., Clinician Scientist and Lecturer in Gastroenterology
Warwick Medical School, University of Warwick, and University Hospitals Coventry & Warwick Tel: 02476 966087

E mail: r.arasaradnam@warwick.ac.uk

Peter Dunn, Head of Communications,

University of Warwick Tel: +44 (0)24 76 523708
or mobile/cell +44(0)7767 655860 email: p.j.dunn@warwick.ac.uk

Peter Dunn | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>