Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting treatment response more accurately

02.09.2013
A new statistical model calculates the genetic evolution of the HI virus in individual patients.

Knowing the possible evolutionary paths allows for more accurate predictions if the AIDS pathogen is likely to develop a resistance to a drug and thus if the treatment is likely to become ineffective in a specific patient. This is the conclusion of a research project funded by the Swiss National Science Foundation (SNSF).

The HI virus is feared, not least, because of its great adaptability. If the virus mutates at precisely the point targeted by a drug, it is able to neutralise the attack and the treatment fails. To minimise these viral defence mechanisms, doctors treat patients with modern combination therapies involving the simultaneous administration of several drugs. This approach forces the virus to run through a series of mutations before it becomes immune to the drugs.

Sequential nature of mutations
"It is not easy to decide which of the over 30 combination therapies is best suited to a patient," says Huldrych Günthard from Zurich University Hospital, president of the Swiss HIV Cohort Study. The decision is based on the prospects of success and therefore on the genetic make-up of a particular virus. The established prediction models already consider the genetics of the virus but they neglect that the virus continuously evolves through sequential mutations.
Choosing the right therapy for each patient
In cooperation with the Swiss HIV Cohort Study, Niko Beerenwinkel and his team from ETH Zurich have now developed a more accurate prediction model based on a probabilistic method (*). This model calculates the possible evolutionary paths of the virus and yields a new predictive measure for the development of resistances: the so-called individualised genetic barrier. When applied retrospectively to 2185 patients of the HIV Cohort, the new approach made it possible to predict treatment success more accurately compared to the existing models. "We are now introducing the individualised genetic barrier in a pilot project and hope that it will help us in the future to identify the best therapy for each patient," says Günthard.

(*) Niko Beerenwinkel, Hesam Montazeri, Heike Schuhmacher, Patrick Knupfer, Viktor von Wyl, Hansjakob Furrer, Manuel Battegay, Bernard Hirschel, Matthias Cavassini, Pietro Vernazza, Enos Bernasconi, Sabine Yerly, Jürg Böni, Thomas Klimkait, Cristina Cellerai, Huldrych F. Günthard, and the Swiss HIV Cohort Study (2013). The Individualized Genetic Barrier Predicts Treatment Response in a Large Cohort of HIV-1 Infected Patients. PLoS Computational Biology online. doi: 10.1371/journal.pcbi.1003203

The Swiss HIV Cohort Study
Established in 1988, the Cohort Study aims to generate knowledge about HIV infection and AIDS as well as to improve the care given to patients. All Swiss hospitals specialising in HIV (Basel, Berne, Geneva, Lausanne, Lugano, St. Gallen and Zurich) have collected and analysed data from over 18,000 HIV-positive persons. More than 8,800 persons are currently taking part in the Swiss HIV Cohort Study. Almost a third of them are women.

Martina Stofer | idw
Further information:
http://www.snsf.ch
http://www.shcs.ch

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>