Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting post-traumatic stress disorder before it happens

14.06.2012
Tel Aviv University researchers use brain imaging to uncover susceptibility to psychological stress and trauma

Most people have intense emotional reactions to traumatizing events like road accidents or combat. But some suffer far longer, caught in the grip of long-term debilitating disorders such as Post-Traumatic Stress Disorder (PTSD).

Because doctors cannot predict who will develop these disorders, however, early or preventive intervention is not available. Now, a new project led by researchers at Tel Aviv University seeks to identify pre-traumatic subjects — those who are more susceptible to long-standing disorders if exposed to a traumatic incident.

The project, a joint work between Prof. Talma Hendler of TAU's School of Psychological Sciences, the Sackler Faculty of Medicine and the new Sagol School of Neuroscience, and Prof. Nathan Intrator of TAU's Blavatnik School of Computer Science and the Sagol School of Neuroscience, uses electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to investigate the areas of the brain that regulate the emotional response to traumatic stress, then decode the brain functionality which indicates pre- or post trauma psychopathology.It's a powerful and novel approach to probing the susceptible brain and providing ongoing monitoring tailored to each individual.

This ongoing interdisciplinary research was done at the Functional Brain Center in collaboration with the Wohl Institute for Advanced Imaging at the Tel Aviv Sourasky Medical Center.

Taking PTSD personally

The earlier and more accurately PTSD is diagnosed, the more likely a healthcare provider can treat it. And beyond their diagnostic capabilities, the research findings could be used to monitor people who will be at high risk for developing these disorders, such as soldiers in combat units.

Diagnosis and treatment of mental disorders depends on understanding how the brain encodes and regulates emotions. For example, certain combinations of activities in emotional and cognitive brain areas may better indicate an individual's susceptibility to traumatic disorders than studying each area by itself, believes Prof. Hendler. In the last few years, the researchers have published on these issues in leading scientific journals including PNAS and Cerebral Cortex.

To look at the interactions between areas of the brain, study participants were monitored using EEG (which records electrical activity along the scalp) and fMRI (which measures changes in blood oxygenation in the brain) concurrently. Connections between the emotional and cognitive areas of the brain were recorded as subjects were exposed to continuous stimulations designed to cause stress and other emotional effects such as horror and sadness. Using advanced computational algroithms, the researchers identified the brain activity that was connected to the reported emotional experience. This brain marking will provide targets for therapeutic procedures based on a person's individual brain activity.

With these experiments, the researchers hope to improve their ability to read emotional states in the depths of the human brain. While they are currently working with EEG and fMRI, Prof. Intrator hopes that in the later stages of development they will be able to read results collected by EEG alone. Initial findings were recently presented at the prestigious Neural Information Processing Systems Conference and published in the journals Brain Connectivity and Neuroimage.

Diagnostics on the go

Ultimately, the researchers hope to develop a portable brain monitoring machine that will "enable the detection or quantification of the emotional state of people suffering from trauma," allowing for minimally invasive monitoring or diagnosis, says Prof. Intrator. He is working on applying this technology to the diagnosis of additional psychological disorders, including schizophrenia, depression, and attention deficit disorder (ADD) for the better management of these diseases. In the case of ADD, for example, this method could be used to monitor the level of concentration in a patient, and provide feedback that could help to regulate the patient's medicinal needs, such as the dosage of Ritalin.

Some of these projects are part of the newly-formed Israel Brain Technology (IBT) initiative, launched by Israeli President Shimon Peres and run by entrepreneur Rafi Gidron. IBT leverages technology and knowledge from Israeli universities to help Israel become a power player in neurotechnology.

American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.

Internationally recognized for the scope and groundbreaking nature of its research and scholarship, Tel Aviv University consistently produces work with profound implications for the future.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Aviv Brain IBT Israeli Neuroscience PTSD Predicting Psychological Science brain area mental disorder

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>