Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting fatal fungal infections

18.06.2009
Einstein researchers discover a method to identify those most susceptible

In a study published in The Journal of Infectious Diseases, researchers from Albert Einstein College of Medicine of Yeshiva University have identified cells in blood that predict which HIV-positive individuals are most likely to develop deadly fungal meningitis, a major cause of HIV-related death.

This form of meningitis affects more than 900,000 HIV-infected people globally—most of them in sub-Saharan Africa and other areas of the world where antiretroviral therapy for HIV is not available.

A major cause of fungal meningitis is Cryptococcus neoformans, a yeast-like fungus commonly found in soil and in bird droppings. Virtually everyone has been infected with Cryptococcus neoformans, but a healthy immune system keeps the infection from ever causing disease.

The risk of developing fungal meningitis from Cryptococcus neoformans rises dramatically when people have weakened immunity, due to HIV infection or other reasons including the use of immunosuppressive drugs after organ transplantation, or for treating autoimmune diseases or cancer. Knowing which patients are most likely to develop fungal meningitis would allow costly drugs for preventing fungal disease to be targeted to those most in need. (In the U.S., the widespread use of antiretroviral therapy by HIV-infected people, and their preventive use of anti-fungal drugs, has dramatically reduced their rate of fungal meningitis from Cryptococcus neoformans to about 2%.)

In this study, Liise-anne Pirofski, M.D., describes a technique for predicting which HIV-infected patients are at greatest risk for developing fungal meningitis caused by Cryptococcus neoformans. Dr. Pirofski is chief in the division of infectious diseases at Einstein.

Dr. Pirofski and her colleagues counted the number of immune cells known as IgM memory B cells in the bloodstream of three groups of individuals: people infected with HIV who had a history of fungal meningitis caused by Cryptococcus neoformans; people infected with HIV but with no history of the disease; and those with no history of either HIV infection or the disease.

"We were astounded to find a profound difference in the level of these IgM memory B cells between the HIV-infected groups," said Dr. Pirofski. "The HIV-infected people with fungal meningitis caused by Cryptococcus neoformans had much lower levels of these cells."

The research team wanted to know if the lower levels of IgM memory B cells in certain HIV-infected individuals resulted from the fungal disease, or whether their reduced levels of these cells preceded their development of the disease.

To find out, Dr. Pirofski analyzed frozen blood samples taken from HIV-infected patients before they had developed fungal meningitis due to Cryptococcus neoformans. Years before these HIV-infected patients were diagnosed with meningitis, their blood had far fewer IgM memory B cells than HIV-infected patients who didn't come down with the disease. This suggests that some people are predisposed to develop fungal meningitis because they have low levels of IgM memory B cells that may be due to their genetic makeup.

These findings could be important for many other immunocompromised patients in addition to those infected with HIV. "We think that knowing whether transplant recipients or other patients taking immunosuppressive drugs have low numbers of IgM memory B cells could be useful in deciding which patients should receive antifungal drugs to prevent meningitis caused by Cryptococcus neoformans," says Dr. Pirofski.

Krishanthi Subramanian, Ph.D., who did her thesis work in Dr. Pirofski's laboratory, is the first author of the study.

The paper, "IgM+ Memory B Cell Expression Predicts HIV-associated Cryptococcus neoformans Disease Status," appears in the June 15, 2009 online issue of The Journal of Infectious Diseases.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. It is the home to some 2,000 faculty members, 750 M.D. students, 350 Ph.D. students (including 125 in combined M.D./Ph.D. programs) and 380 postdoctoral investigators. Last year, Einstein received more than $130 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five hospital centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College runs one of the largest post-graduate medical training program in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>