Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting fatal fungal infections

18.06.2009
Einstein researchers discover a method to identify those most susceptible

In a study published in The Journal of Infectious Diseases, researchers from Albert Einstein College of Medicine of Yeshiva University have identified cells in blood that predict which HIV-positive individuals are most likely to develop deadly fungal meningitis, a major cause of HIV-related death.

This form of meningitis affects more than 900,000 HIV-infected people globally—most of them in sub-Saharan Africa and other areas of the world where antiretroviral therapy for HIV is not available.

A major cause of fungal meningitis is Cryptococcus neoformans, a yeast-like fungus commonly found in soil and in bird droppings. Virtually everyone has been infected with Cryptococcus neoformans, but a healthy immune system keeps the infection from ever causing disease.

The risk of developing fungal meningitis from Cryptococcus neoformans rises dramatically when people have weakened immunity, due to HIV infection or other reasons including the use of immunosuppressive drugs after organ transplantation, or for treating autoimmune diseases or cancer. Knowing which patients are most likely to develop fungal meningitis would allow costly drugs for preventing fungal disease to be targeted to those most in need. (In the U.S., the widespread use of antiretroviral therapy by HIV-infected people, and their preventive use of anti-fungal drugs, has dramatically reduced their rate of fungal meningitis from Cryptococcus neoformans to about 2%.)

In this study, Liise-anne Pirofski, M.D., describes a technique for predicting which HIV-infected patients are at greatest risk for developing fungal meningitis caused by Cryptococcus neoformans. Dr. Pirofski is chief in the division of infectious diseases at Einstein.

Dr. Pirofski and her colleagues counted the number of immune cells known as IgM memory B cells in the bloodstream of three groups of individuals: people infected with HIV who had a history of fungal meningitis caused by Cryptococcus neoformans; people infected with HIV but with no history of the disease; and those with no history of either HIV infection or the disease.

"We were astounded to find a profound difference in the level of these IgM memory B cells between the HIV-infected groups," said Dr. Pirofski. "The HIV-infected people with fungal meningitis caused by Cryptococcus neoformans had much lower levels of these cells."

The research team wanted to know if the lower levels of IgM memory B cells in certain HIV-infected individuals resulted from the fungal disease, or whether their reduced levels of these cells preceded their development of the disease.

To find out, Dr. Pirofski analyzed frozen blood samples taken from HIV-infected patients before they had developed fungal meningitis due to Cryptococcus neoformans. Years before these HIV-infected patients were diagnosed with meningitis, their blood had far fewer IgM memory B cells than HIV-infected patients who didn't come down with the disease. This suggests that some people are predisposed to develop fungal meningitis because they have low levels of IgM memory B cells that may be due to their genetic makeup.

These findings could be important for many other immunocompromised patients in addition to those infected with HIV. "We think that knowing whether transplant recipients or other patients taking immunosuppressive drugs have low numbers of IgM memory B cells could be useful in deciding which patients should receive antifungal drugs to prevent meningitis caused by Cryptococcus neoformans," says Dr. Pirofski.

Krishanthi Subramanian, Ph.D., who did her thesis work in Dr. Pirofski's laboratory, is the first author of the study.

The paper, "IgM+ Memory B Cell Expression Predicts HIV-associated Cryptococcus neoformans Disease Status," appears in the June 15, 2009 online issue of The Journal of Infectious Diseases.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. It is the home to some 2,000 faculty members, 750 M.D. students, 350 Ph.D. students (including 125 in combined M.D./Ph.D. programs) and 380 postdoctoral investigators. Last year, Einstein received more than $130 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five hospital centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College runs one of the largest post-graduate medical training program in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>