Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the next eye pathogen; analysis of a novel adenovirus

11.04.2013
Research outlined in mBio

The ongoing dance between a virus and its host distinctly shapes how the virus evolves. While human adenoviruses typically cause mild infections, recent reports have described newly characterized adenoviruses that can cause severe, sometime fatal, human infections.

Researchers from the Massachusetts Eye and Ear and Harvard Medical School, Provincial Laboratory for Public Health, School of Systems Biology, George Mason University, and the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center report a systems biology approach to show how evolution has affected the disease potential of a recently identified novel human adenovirus. Their approach is based on the belief that understanding viral evolution and pathogenicity is essential to our capacity to foretell the potential impact on human disease for new and emerging viruses. Their study is now published in mBio.

Since the first adenovirus was characterized in 1953, 69 human adenoviruses (HAdVs) have been recognized as unique types. Analysis of whole-genome sequence data for existing and new HAdVs confirmed a critical role for homologous recombination in adenovirus evolution, leading to new and sometime serious human infections. The emergence of new HAdV types, with several associated with severe eye infection, promoted the investigators to apply a systems biology approach to try to predict the ocular tropism of a previously uncharacterized and highly novel HAdV, isolated by nasopharyngeal swab from a 4-month-old boy with several bronchiolitis.

A combined genomic, bioinformatics and biological analysis identified a unique deletion in a key protein of the viral capsid and further suggested the potential of the virus to cause severe ocular infection. The results point toward a possible approach for predicting pathogenicity for newly identified and recently emergent human pathogens.

The study was supported NIH grants EY013124, EY021558 and Ey014104, a Research to Prevent Blindness Senior Scientific Investigator Award, the Falk Foundation and the Massachusetts Lions Eye Research Fund.

About Massachusetts Eye and Ear

Mass. Eye and Ear clinicians and scientists are driven by a mission to find cures for blindness, deafness and diseases of the head and neck. After uniting with Schepens Eye Research Institute Mass. Eye and Ear in Boston became the world's largest vision and hearing research center, offering hope and healing to patients everywhere through discovery and innovation. Mass. Eye and Ear is a Harvard Medical School teaching hospital and trains future medical leaders in ophthalmology and otolaryngology, through residency as well as clinical and research fellowships. Internationally acclaimed since its founding in 1824, Mass. Eye and Ear employs full-time, board-certified physicians who offer high-quality and affordable specialty care that ranges from the routine to the very complex. U.S. News & World Report's "Best Hospitals Survey" has consistently ranked the Mass. Eye and Ear Departments of Otolaryngology and Ophthalmology as top five in the nation.

Mary Leach | EurekAlert!
Further information:
http://www.masseyeandear.org/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>