Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precocious GEM: Shape-shifting sensor can report conditions from deep in the body

30.03.2015

Scientists working at the National Institute of Standards and Technology (NIST) and the National Institutes of Health (NIH) have devised and demonstrated a new, shape-shifting probe, about one-hundredth as wide as a human hair, which is capable of sensitive, high-resolution remote biological sensing that is not possible with current technology. If eventually put into widespread use, the design could have a major impact on research in medicine, chemistry, biology and engineering. Ultimately, it might be used in clinical diagnostics.


View an animation of the GEM microprobe at http://www.nist.gov/pml/electromagnetics/20150327_gem_biochemical_sensor.cfm.

Credit: Kelley/NIST PML

To date, most efforts to image highly localized biochemical conditions such as abnormal pH* and ion concentration--critical markers for many disorders--rely on various nanosensors that are probed using light at optical frequencies. But the sensitivity and resolution of the resulting optical signals decrease rapidly with increasing depth into the body. That has limited most applications to less obscured, more optically accessible regions.

The new shape-shifting probe devices, described online in the journal Nature,** are not subject to those limitations. They make it possible to detect and measure localized conditions on the molecular scale deep within tissues, and to observe how they change in real time.

"Our design is based on completely different operating principles," says NIST's Gary Zabow, who led the research with NIH colleagues Stephen Dodd and Alan Koretsky. "Instead of optically based sensing, the shape-changing probes are designed to operate in the radio frequency (RF) spectrum, specifically to be detectable with standard nuclear magnetic resonance (NMR) or magnetic resonance imaging (MRI) equipment. In these RF ranges, signals are, for example, not appreciably weakened by intervening biological materials."

As a result, they can get strong, distinctive signals from very small dimensions at substantial depths or in other locations impossible to probe with optically based sensors.

The novel devices, called geometrically encoded magnetic sensors (GEMs), are microengineered metal-gel sandwiches about 5 to 10 times smaller than a single red blood cell, one of the smallest human cells. Each consists of two separate magnetic disks that range from 0.5 to 2 micrometers (millionths of a meter) in diameter and are just tens of nanometers (billionths of a meter) thick. (See animation.)

Between the disks is a spacer layer of hydrogel,*** a polymer network that can absorb water and expand significantly; the amount of expansion depends on the chemical properties of the gel and the environment around it. Conversely, it can also shrink in response to changing local conditions. Swelling or shrinking of the gel changes the distance (and hence, the magnetic field strength) between the two disks, and that, in turn, changes the frequency at which the protons in water molecules around and inside the gel resonate in response to radio-frequency radiation. Scanning the sample with a range of frequencies quickly identifies the current shape of the nanoprobes, effectively measuring the remote conditions through the changes in resonance frequencies caused by the shape-changing agents.

In the experiments reported in Nature, the scientists tested the sensors in solutions of varying pH, in solutions with ion concentration gradients, and in a liquid growth medium containing living canine kidney cells as their metabolism went from normal to nonfunctional in the absence of oxygen. That phenomenon caused the growth medium to acidify, and the change over time was sensed by the GEMs and recorded through real-time shifting in resonant frequencies. Even for the un-optimized, first-generation probes used, the frequency shifts resulting from changes in pH were easily resolvable and orders of magnitude larger than any equivalent frequency shifting observed through traditional magnetic resonance spectroscopy approaches.

Tracking highly localized pH values in living organisms can be difficult. (A blood test cannot necessarily do it because the sample mixes blood from numerous locations.) Yet local pH changes can provide invaluable early signals of many pathologies. For example, the pH around a cancer cell is slightly lower than normal, and internal inflammation generally leads to local change in pH level. Detecting such changes might reveal, for example, the presence of an unseen tumor or show whether an infection has developed around a surgical implant.

"Of course, that sort of potential use in living organisms is still a long way off," Zabow said. "Our data were taken in vitro. And some potential applications of the sensors may not be biological at all. But a long-term goal is to improve our techniques to the point at which GEMs can be employed for biomedical uses."

That would require, among other things, further miniaturization. The 0.5 to 2 µm diameter GEMs in the experiments are already small enough for many in vitro and other possible non-biological applications, as well as possibly for some in vivo cellular related applications. But preliminary estimates by the experimenters indicate that the sensors can be reduced substantially from their current size, and might conceivably be made smaller than 100 nanometers in diameter. That would open up many additional biomedical applications.

One of the most significant features of GEMs is that they can be "tuned" in fabrication to respond to different biochemical states and to resonate in different parts of the RF spectrum by altering the gel composition and the magnet shapes and materials, respectively. So placing two different populations of GEMs at the same site makes it possible to track changes in two different variables at the same time--a capability the researchers demonstrated by placing GEMs with two different dimensions in the same location and detecting the signals from both simultaneously.

"The idea is that you could design different sensors to measure different things, effectively measuring a panel of potential biomarkers simultaneously, rather than just one, to better differentiate between different pathologies," Zabow says. "We think that these sensors can potentially be adapted to measure a variety of different biomarkers, possibly including things such as glucose, local temperatures, various ion concentrations, possibly the presence or absence of various enzymes and so forth."

Ron Goldfarb, leader of NIST's Magnetics Group, notes that, "the work on geometrically encoded magnetic sensors by Gary Zabow and colleagues is a natural extension of research published by the team, along with NIST's John Moreland, in 2008. That work showed how micromagnets can act as 'smart tags' to potentially identify particular cells, tissues or physiological conditions. Functionally, the GEMS in the current effort are more advanced in that they change their shape in response to stimuli; thus, they act as measurement devices. The next challenge will be design optimization and the development of dimensionally controlled, large-scale fabrication processes in order to make these sensors widely available to researchers."

###

* pH is a measure of the acidity or alkalinity of a substance, on a scale ranging from 0 (highly acidic) to 14 (highly alkaline). 7 is neutral. Human blood is normally around 7.4.

** G. Zabow, S.J. Dodd and A.P. Koretsky. Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes. Nature, Published online March 16, 2015.doi:10.1038/nature14294.

*** Hydrogels are cross-linked networks of polymers that can absorb various amounts of water depending on their chemical composition and structure. The hydrogels used in the NIST-NIH project were engineered to swell in neutral environments and to shrink in low-pH environments.

Media Contact

Michael Baum
michael.baum@nist.gov
301-975-2763

 @usnistgov

http://www.nist.gov 

Michael Baum | EurekAlert!

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>