Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New potential to treat chronic obstructive pulmonary disease

27.01.2010
Possible drug targets identified to alleviate critical symptoms associated with emphysema

Chronic obstructive pulmonary disease (COPD) is defined by emphysema and/or chronic bronchitis. It destroys the normal architecture of the lung and inhibits the mechanical aspects of breathing, which prevents necessary gas exchange. Patients suffer from coughing fits, wheezing, and increased incidence of lung infections.

These symptoms are associated with changes in the architecture of the lung. The air sacs, which usually inflate with air during breathing as they loose their elasticity, becoming rigid and unable to inflate. The lung becomes inflamed and increases its mucus production, which further inhibits gas exchange, and prevents the patient's ability to be physically active.

Although COPD is a leading cause of morbidity and mortality worldwide, there is currently no cure for the disease. Providing patients with concentrated oxygen therapy and instruction on breathing techniques increases survival rates.

In a new study published in Disease Models & Mechanisms (DMM), dmm.biologists.org, collaborative findings by European researchers demonstrate that an antioxidant protein, sestrin, triggers molecular pathways that induce some of the critical lung changes associated with COPD. By genetically inactivating this protein, they were able to improve the elastic features of the lung in a mouse model of emphysema. These authors believe that by inhibiting the antioxidant sestrin protein, they prevent the accelerated degradation of elastic fibers within the lung. This suggests that patients with COPD could benefit from treatment with drugs that block sestrin function.

Although sestrin is an antioxidant protein, the authors found that this characteristic of the protein is not likely to influence its effects on COPD progression in the lung. The negative effects of sestrin on lung elasticity results from its suppression of genes whose products maintain elastin. Elastin makes the lung flexible so that it can expand and contract. Without elastin fibers, the lung becomes rigid and increasingly unable to provide for gas exchange.

The report, titled 'Inactivation of sestrin 2 induces TGF-beta signalling and partially rescues pulmonary emphysema in a mouse model of COPD' was written by Frank Wempe, Silke De-Zolt, Thorsten Bangsow and Harald von Melchner at the University of Frankfurt Medical School, Nirmal Parajuli, Rio Dumitrascu and Norbert Weismann at the University of Giessen Lung Center, Anja Sterner-Kock at the Institute of Veterinary Pathology in Germany and Katri Koli and Jorma Keski-Oja at the University of Helsinki in Finland. The study will be published in the March/April issue of 2010 (Vol 3/Issue 3-4) of the research journal, Disease Models & Mechanisms (DMM), published by The Company of Biologists, a non-profit based in Cambridge, UK.

About Disease Models & Mechanisms:

Disease Models & Mechanisms (DMM) is a new research journal publishing both primary scientific research, as well as review articles, editorials, and research highlights. The journal's mission is to provide a forum for clinicians and scientists to discuss basic science and clinical research related to human disease, disease detection and novel therapies. DMM is published by the Company of Biologists, a non-profit organization based in Cambridge, UK.

The Company also publishes the international biology research journals Development, Journal of Cell Science, and the Journal of Experimental Biology. In addition to financing these journals, the Company provides grants to scientific societies and supports other activities including travelling fellowships for junior scientists, workshops and conferences. The world's poorest nations receive free and unrestricted access to the Company's journals.

Kristy Kain | EurekAlert!
Further information:
http://www.vanderbilt.edu

Further reports about: Biologists COPD Cambridge DMM Disease Model gas exchange molecular pathway mouse model

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>