Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential new herpes therapy studied

05.02.2009
A new therapy being developed at the University of Florida could, in time, produce another weapon for the fight against herpes.

The gene-targeting approach uses a specially designed RNA enzyme to inhibit strains of the herpes simplex virus. The enzyme disables a gene responsible for producing a protein involved in the maturation and release of viral particles in an infected cell.

The technique appears to be effective in experiments with mice and rabbits, but further research is required before it can be attempted in people who are infected with herpes.

"If things worked out the best they could, I think this could be a measure to prevent recurrence, and that would help a lot of people — and even if it just reduced severity, it would give us another therapy in cases where there is drug resistance," said David Bloom, Ph.D., a virologist at the UF College of Medicine who leads the interdisciplinary research team investigating the new therapy.

The work was published in the Journal of Virology in August.

The HSV-1 strain of the herpes virus causes cold sores or fever blisters around the mouth, genital herpes, a deadly but rare type of encephalitis, and keratitis, a scarring of the cornea that leads to vision loss. HSV-2 is the more common cause of genital herpes.

Existing herpes treatments work because the active ingredients target viral building blocks, and become incorporated into the virus' genetic material and shut down its ability to make copies of itself. In so doing, the drugs limit the severity of herpes lesions.

"They work pretty well, and they keep the disease in check, but there's no real cure," said Alfred Lewin, Ph.D., a molecular geneticist on the research team.

Current treatments also can cause inflammation, and in many people the virus becomes resistant and there is no back-up medication. In HSV keratitis, even after a corneal transplant the virus can hide out in nerve cells and cause re-infection.

"Our approach would keep it from popping up again," Lewin said.

The UF team — which also includes researchers and clinicians from obstetrics and gynecology, orthopedics and ophthalmology and the university's Genetics Institute — came up with a way to cut the virus' RNA to prevent reactivation.

By designing special enzymes called hammerhead ribozymes, the researchers were able to target a so-called "late" gene that releases its protein product relatively late after infection. With late genes, partial corruption of the genetic material is sufficient to shut down virus production, as opposed to "early" genes, which would require total inactivation to hinder the process.

"What I think is remarkable with the technology is its versatility — you can design ribozymes that will be effective against any pathogenic virus you're interested in inhibiting," said John M. Burke, a professor of microbiology and molecular genetics at the University of Vermont, who has studied the use of ribozymes for treating viral infections.

Burke, who is not affiliated with the research at UF, said that finding the way to get the ribozyme into an infected cell or animal or person in such a way that it can be active once inside is "the hard part" of these types of experiments.

The University of Florida team packaged the enzyme inside an adenovirus — the type of virus that causes the common cold — and injected it into the mice. Afterward, the animals were infected with potentially lethal doses of the HSV-1 virus. As a control, other mice were injected with green fluorescent protein before being exposed to the virus.

Ninety percent of the mice that were treated with the ribozyme survived, whereas the survival rate was less than 45 percent in mice not given the special enzyme.

Analysis of tissue from treated mice revealed lower viral DNA levels in the feet, nerve cells called dorsal root ganglia and the spinal cord than in mice not treated with the ribozyme.

The approach has also been tested in mouse tissue and in rabbits.

"They have found a very good experimental system in which they can convincingly show significant antiviral activity," Burke said.

But the researchers still need to do more checks to see whether it is safe to move to human testing. Also, they want to develop more than one ribozyme, because having enzymes that attack different places on the viral RNA during replication helps prevent the virus from successfully mutating to resist treatment. They are also trying different ways of delivering the enzyme to the host cells.

One delivery technique for the eye is called iontophoresis, in which a low current pushes the treatment into the cells. The ribozyme could also be formulated into a cream to be used topically on other parts of the body.

"I would like to have it where you put it on once and forget about it," Lewin said.

The work is funded by University of Florida Office of Translational Research, Research to Prevent Blindness and The Burroughs Wellcome Fund.

"I think we've gotten it to the point where it looks promising," Bloom said.

Czerne M. Reid | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>